Kinga Wilkus, MSc

The influence of tumor microenvironment on the activity and gene expression profile of organospecific endothelial cells

Dissertation for the Doctor of medical sciences and health sciences in medical sciences

Supervisor: Claudine Kieda, prof., PhD, DSc

Co-Supervisor: Klaudia Brodaczewska, PhD

Military Institute of Medicine-National Science Centre, Laboratory of Molecular Oncology and Innovative Therapies

The doctoral dissertation defense submitted to Medical Sciences Discipline Board of the Medical University of Warsaw

Warsaw, 2023

Streszczenie

Wstęp: Rak piersi jest jednym z najczęściej występujących nowotworów złośliwych wśród żeńskiej populacji na całym świecie, będąc przyczyną śmierci tysięcy kobiet. Dlatego tak istotne jest zrozumienie procesu wzrostu guza, jego progresji i formowania przerzutów. Angiogeneza- proces, w którym komórki śródbłonka (ECsang. *endothelial cells*) odgrywają kluczową rolę- nie przebiega prawidłowo w przypadku patologicznej tkanki w porównaniu do zdrowej tkanki, co stanowi jedną z głównych cech raka (ang. *hallmark of cancer*). Nadrzędnym celem projektu jest scharakteryzowanie organospecyficzności komórek śródbłonka wynikającej z mikrośrodowiska guza, poprzez określenie globalnego wzoru ekspresji genów oraz ocenę tkankowo-specyficznej odpowiedzi oraz aktywności ECs pochodzących z guza w porównaniu ze zdrowym śródbłonkiem.

Metodologia: W ramach realizacji projektu, badania koncentrowały się na komórkach wchodzących w skład i kształtujących mikrośrodowisko guza w trakcie choroby, tj. komórkach śródbłonka, ponieważ są one odpowiedzialne za angiogenezę. Do eksperymentów wykorzystano unikalny model organospecyficznych komórek śródbłonka, wyizolowanych ze zdrowej tkanki i guza pierwotnego, pochodzących od tej samej pacjentki z rakiem piersi. Komórki te unieśmiertelniono w określonych warunkach, zachowując ich charakterystyczny fenotyp śródbłonkowy, zarówno pod względem cech, funkcji i pochodzenia tkankowego. Komórki hodowano in vitro w warunkach normoksji (21% pO2) oraz hipoksji (1% pO2). Do oceny wpływu organospecyficzności na aktywność komórek śródbłonka wykorzystano test funkcjonalny tworzenia pseudonaczyń. Ponadto, użyliśmy testu żywotności komórek, aby porównać stopień proliferacji w standardowych warunkach hodowli między zdrowymi i patologicznymi komórkami śródbłonka. Za pomocą cytometrii przepływowej i metody Western blot scharakteryzowaliśmy fenotyp ECs i ekspresję wybranych cząsteczek na poziomie białka. Aby określić, w jaki sposób mikrośrodowisko wpłynęło na ważne cząsteczki, takie jak wydzielanie czynnika wzrostu śródbłonka naczyniowego A (VEGF-A- ang. vascular endothelial growth factor A) przez komórki śródbłonka, zmierzono poziom wydzielanego VEGF-A w pożywce hodowlanej za pomocą testu ELISA. Sekwencjonowanie nowej generacji (NGS- ang. next generation sequencing) całego transkryptomu, umożliwiło zidentyfikowanie kluczowych genów, które są modulowane przez mikrośrodowisko guza. Określono profil ekspresji genów, który charakteryzuje komórki patologiczne w porównaniu ze zdrowymi komórkami śródbłonka.

Wyniki: Dokonano przeglądu aktualnej wiedzy na temat komórek śródbłonka, ich organospecyficzności i plastyczności. Przedstawiono w jaki sposób śródbłonkowe komórki progenitorowe/komórki prekursorowe śródbłonka oraz dojrzałe komórki mogą być wykorzystane w badaniach in vitro: w modelach 3D i łączonej hodowli z innymi komórkami w celu wytworzenia bariery krew-mózg (BBB-ang. blood brain barier). Podsumowano rolę komórek śródbłonka w angiogenezie i chorobach. W oryginalnej pracy przeprowadzono, przy użyciu sekwencjonowania transkryptomu, globalną charakterystykę genów nowego modelu komórkowego i zidentyfikowano najbardziej rozregulowane geny oraz procesy biologiczne. Patologiczne ECs charakteryzowały się wzrostem Ephrin-B2 i SNCAIP, co wskazuje na ich mniejszą dojrzałość, a także obniżoną ekspresją CD31, markera ECs. Zbadano inne białka charakterystyczne dla śródbłonka naczyń (ACE+, VWF+) i markery ich różnicowania (CD31+, CD 133+, CD105+, CD34). Pokazaliśmy, że ich ekspresja była obniżona w śródbłonku pochodzącym z guza. Ponadto patologiczne ECs miały obniżony poziom białek adhezyjnych (ICAM-1+, VCAM-1+, CD62-L+) oraz białek tworzących barierę, takich jak ZO-1+. Za pomocą testów funkcjonalnych, pseudonaczyń i testu testu tworzenia przepuszczalności, potwierdziliśmy różnice między obiema liniami komórkowymi, na co wskazywał również zwiększony poziom VEGF-A uwalniany w odpowiedzi na niskie pO2. Dane z NGS wskazały geny zaangażowane w przebudowę macierzy pozakomórkowej (ECMang. extracellular matrix protein): kolageny, lamininę, fibronektynę i integrynę (ITGB6), które uległy deregulacji w ECs pochodzących z guza piersi. To dodatkowo potwierdza patologiczną angiogenezę HBCa.MEC wykazaną w testach funkcjonalnych. Innym procesem zmienionym w patologicznym śródbłonku było przejście endotelialnomezenchymalne (EndoMT) związane z reorganizacją macierzy pozakomórkowej spowodowaną rozregulowaniem genów: SPP1, ITGB6, COL4A4, ADAMST2, LAMA1, GAS6, AGTR2, PECAM1, ELN, FBLN2, COL6A3, COL9A3. Profil ekspresji genów przebudowujących ECM sugerował, że nowotworowe ECs nabywają właściwości migracyjnych, co zostało potwierdzone testem funkcjonalnym - testem gojenia się ran (dane nieprzedstawione, znajdują się w przygotowanej do opublikowania kolejnej pracy naukowej).

Wnioski: Scharakteryzowany unikalny model ECs pochodzących z piersi- zdrowej i patologicznej tkanki, wskazuje na konieczność wykorzystywania odpowiednich modeli komórkowych do prowadzenia biologicznie istotnych badań *in vitro*. Komórki

śródbłonka z guza w porównaniu ze zdrową odpowiadającą tkanką różniły się fenotypowo i funkcjonalnie. Dzięki temu modelowi, określono nie tylko wpływ mikrośrodowiska guza i zdolności adaptacyjnych ECs, ale także ich interakcje z komórkami zrębu. Wskazano na komunikację między komórkami śródbłonka a mikrośrodowiskiem, które ma kluczowe znaczenie dla rozwoju guza: oprócz zakłócania angiogenezy, mikrośrodowisko guza zmienia fenotyp w patologicznych EC poprzez indukcję EndoMT.