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Wykaz stosowanych skrótów

AUC – pole powierzchni pod krzywą ROC

BOT – guzy graniczne jajnika bez mutacji BRAF V600E

BOT.V600E – guzy graniczne jajnika z mutacją BRAF V600E

BOTS – guzy graniczne jajnika

BSA – albumina surowicy bydlęcej

CDS – sekwencja kodująca genu

DMP – nukleotyd o zróżnicowanej metylacji

DMR – region o zróżnicowanej metylacji

EMT – przejście epitelialno-mezenchymalne

FIGO – Międzynarodowa Federacja Ginekologii i Położnictwa

hgOvCa – nisko zróżnicowany rak jajnika

hot-spot – region w genomie o wysokiej częstości występowania wariantów genetycznych

HR – iloraz ryzyka

krzywa ROC -- krzywa charakterystyki operacyjnej odbiornika

lgOvCa – wysoko zróżnicowany rak jajnika

MHC – główny układ zgodności tkankowej

NGS – sekwencjonowanie następnej generacji

non-SNP – wariant genetyczny niebędący polimorfizmem pojedynczego nukleotydu

OvCa – rak jajnika

PETE – technika wzbogacania DNA, ang. „Primer Extension Target Enrichment"

Real-Time qPCR – ilościowa łańcuchowa reakcja polimerazy w czasie rzeczywistym

RT – choroba resztkowa

SNP – polimorfizm jednonukleotydowy

TAM – makrofagi związane z guzem nowotworowym

UTR – region genu nieulegający translacji

VEP – program „Variant Effect Predictor” do annotacji wariantów genetycznych

WB – technika „western blot”
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Streszczenie

W  przeciwieństwie  do  hgOvCa,  które  są  dość  dobrze  poznaną  jednostką  chorobową, 

molekularne tło w BOTS i lgOvCa jest gorzej scharakteryzowane. W niniejszej pracy podjęto się 

analizy wariantów genetycznych w kluczowych supresorach i onkogenach oraz badania metylomu 

w BOTS z (BOT.V600E) i  bez  (BOT) mutacji  BRAF V600E,  lgOvCa i  hgOvCa.  Łącznie  225 

guzów  jajnika  oceniono  pod  kątem  zmian  genetycznych  w  76  genach  związanych  z 

nowotworzeniem,  stosując  sekwencjonowanie  następnej  generacji  (NGS),  a  następnie  walidację 

wybranych wariantów za pomocą sekwencjonowania Sangera. Na koniec przeprowadzono analizę 

Western blot, aby sprawdzić wpływ wytypowanych polimorfizmów na ekspresję odpowiadających 

im białek.  Ponadto w podgrupie 128 guzów surowiczych wykonano profilowanie metylomu za 

pomocą  mikromacierzy  Infinium  MethylationEPIC.  Nasze  badanie  ujawniło  rozbieżne  profile 

polimorficzne  w  różnych  nowotworach  jajnika,  wskazując  na  odrębne  ścieżki  sygnałowe 

zaangażowane w ich rozwój.  Niektóre  mutacje  wydają  się  odgrywać ważną rolę  w BOTS bez 

wariantu  BRAF V600E (KRAS) i  w lgOvCa (KRAS i  NRAS),  ale nie w hgOvCa. Co więcej, na 

podstawie wieloczynnikowej analizy regresji,  zidentyfikowano potencjalne biomarkery w BOTS 

(PARP1) i hgOvCa (FANCI, BRCA2, TSC2, FANCF). Dla niektórych analizowanych genów, takich 

jak FANCI,  FANCD2 oraz FANCI,  FANCF,  TSC2, status odpowiednio BRCA1/2 i TP53 okazał się 

kluczowy. Jeśli chodzi o zmiany epigenetyczne, największą liczbę odmiennie zmetylowanych CpG 

i regionów (DMR) znaleziono między lgOvCa i hgOvCa. Co ciekawe, dziesięć najistotniejszych 

DMR,  odróżniających  BOT  od  lgOvCa,  obejmowało  region  MHC  na  chromosomie  6. 

Zidentyfikowano  również  setki  DMR,  które  mogą  być  potencjalnie  użyte  jako  biomarkery 

predykcyjne  lub  prognostyczne  w  BOTS  i  hgOvCa.  DMR  z  najlepszymi  zdolnościami 

dyskryminacyjnymi obejmowały następujące geny: BAIAP3, IL34, WNT10A, NEU1, SLC44A4 oraz 

HMOX1,  TCN2,  PES1,  RP1-56J10.8,  ABR,  NCAM1,  RP11-629G13.1,  AC006372.4,  NPTXR 

odpowiednio w BOTS i hgOvCa.
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English title

The characterization of genetic variants in selected tumor suppressors and oncogenes as well as the 

methylomes of borderline ovarian tumors and low-grade and high-grade ovarian cancers

Summary

In contrast to the most frequent and well-described hgOvCa, the molecular background of 

BOTS and lgOvCa is less thoroughly characterized. Here, we aimed to analyze genetic variants in 

crucial  tumor  suppressors  and  oncogenes,  as  well  as  methylation  changes  in  BOTS  with 

(BOT.V600E) and without (BOT) the BRAF V600E mutation, lgOvCa, and hgOvCa. In total, 225 

ovarian  tumors  were  evaluated  for  genetic  alterations  in  76  cancer-related  genes  using  next-

generation sequencing, followed by validation of selected variants by Sanger sequencing. Finally, 

Western blot analyses were carried out to check the impact of the nominated polymorphisms on the 

expression of the corresponding proteins. Additionally, the subgroup of 128 serous tumors had their 

methylome profiled with Infinium MethylationEPIC microarrays. Our study unraveled divergent 

polymorphic  patterns  in  different  ovarian  neoplasms  pointing  to  distinct  signaling  pathways 

engaged in their development. Certain mutations seem to play an important role in BOTS without 

the  BRAF V600E  variant  (KRAS)  and  in  lgOvCa  (KRAS and  NRAS),  but  not  in  hgOvCa. 

Additionally, based on multivariable regression analyses, potential biomarkers in BOTS (PARP1) 

and  hgOvCa  (FANCI,  BRCA2,  TSC2,  FANCF)  were  identified.  Noteworthy,  for  some  of  the 

analyzed genes, such as FANCI,  FANCD2, and FANCI,  FANCF,  TSC2, the status of BRCA1/2 and 

TP53,  respectively,  turned out  to  be  crucial.  As for  epigenetic  changes,  the  biggest  number  of  

differentially  methylated  CpGs and regions  (DMRs)  was  found between lgOvCa and hgOvCa. 

Remarkably, the ten most significant DMRs, discriminating BOT from lgOvCa, encompassed the 

MHC region on chromosome 6. We also identified hundreds of DMRs, being of potential use as  

predictive or prognostic biomarkers in BOTS and hgOvCa. DMRs with the best  discriminative 

capabilities  overlapped  the  following  genes:  BAIAP3,  IL34,  WNT10A,  NEU1,  SLC44A4,  and 

HMOX1,  TCN2,  PES1,  RP1-56J10.8,  ABR,  NCAM1,  RP11-629G13.1,  AC006372.4,  NPTXR in 

BOTS and hgOvCa, respectively.
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Wstęp

Rak  jajnika  (OvCa)  jest  powszechnym  nowotworem  o  złym  rokowaniu  i  wysokiej 

śmiertelności na całym świecie (1). We wczesnym stadium zaawansowania szanse na wyleczenie są 

stosunkowo wysokie, jednakże często z powodu niespecyficznych i pozornie niegroźnych objawów 

(bóle brzucha, wzdęcia, etc.), rak jajnika wykrywany jest w późnym stadium, gdy śmiertelność jest 

już wysoka, a leczenie nie przynosi  zadowalających efektów ze względu na nawroty choroby i 

oporność komórek nowotworowych na chemioterapię (2).

Istnieją dwa główne typy OvCa: nisko zróżnicowany rak jajnika (hgOvCa, ang. high-grade), 

oraz rzadziej występujący, wysoko zróżnicowany rak jajnika (lgOvCa, ang. low-grade). Pierwszy z 

nich jest najczęstszym typem (stanowi ok. 90% nowotworów tego narządu). Charakteryzuje się on 

wtórnie  występującą  chemioopornością  i  ekstremalną  niestabilnością  genomową,  w  tym 

rearanżacjami  chromosomowymi  i  licznymi  mutacjami  w  genach,  zwłaszcza  tych  kodujących 

białka supresorowe, takie jak TP53, BRCA1 i BRCA2 (3). Z kolei, jak już wspomniano, lgOvCa 

jest  rzadkim  nowotworem  jajnika  charakteryzującym  się  młodszym  wiekiem  pacjentek  w 

momencie  rozpoznania,  względną  chemioopornością  i  dłuższym przeżyciem w porównaniu  do 

swojego odpowiednika o wysokim stopniu złośliwości. Ponadto, w lgOvCa mutacje w genach TP53 

i  BRCA1/2 występują  bardzo  rzadko  (4,5).  lgOvCa  (szczególnie  typu  surowiczego)  posiadają 

podobną sygnaturę molekularną do guzów jajnika o granicznej złośliwości (BOTS, ang. borderline 

ovarian tumors)  (6), które są również rzadką jednostką chorobową. W przeciwieństwie do OvCa 

BOTS występują  głównie  u  kobiet  w wieku rozrodczym,  są  zwykle  diagnozowane w niższym 

stopniu zaawansowania klinicznego (wg FIGO), mają lepsze wskaźniki przeżywalności oraz nie są 

tak agresywne. Pomimo tych zalet, diagnostyka przedoperacyjna BOTS jest dość trudna. Metody 

obrazowania takie jak USG są przydatne, jednak nie dają 100% pewności w kwestii odróżnienia 

BOTS od raków. Co więcej, w przypadku BOTS brak jest specyficznych markerów molekularnych, 

a obecnie stosowane markery (np. CA125) mają niewystarczającą specyficzność (7–10). Operacja z 

całkowitą resekcją guza jest podstawą leczenia BOTS. Jednak u młodych kobiet rozważających 

prokreację,  preferencyjnie  stosuje  się  interwencję  chirurgiczną  oszczędzającą  jajniki  (8). 

Chemioterapia nie przynosi efektów w przypadku BOTS, m.in. ze względu na ich wolniejsze tempo 

podziałów  (7).  Co więcej,  po całkowitym usunięciu  guza  nawet  w 20% dochodzi  do nawrotu. 

Większość  BOTS nawraca  jako  guzy  o  granicznej  złośliwości,  jednak  u  około  30% pacjentek 

rozwija się OvCa (6,11,12) .
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W przeciwieństwie do hgOvCa w BOTS mutacje w TP53 i BRCA1/2 nie występują często 

(13–15), podczas gdy najczęściej zmutowanymi genami są  BRAF i  KRAS (szczególnie w BOTS 

podtypu  surowiczego).  Mutacje  w  tych  genach  są  czasem  obecne  również  w  lgOvCa,  a  ich 

występowanie w hgOvCa jest bardzo rzadkie (16,17). Na szczególną uwagę zasługuje gen BRAF, w 

którym najczęściej pojawiającym się patogennym wariantem aktywującym jest substytucja waliny 

w  pozycji  600  (w  egzonie  15)  na  kwas  glutaminowy  (Val600Glu,  V600E).  Zmiana  ta  jest 

klasyfikowana jako osobna grupa zmian w tym genie. Wykazano, że ze wszystkich polimorfizmów 

występujących w BRAF, wariant V600E wywołuje najsilniejsszy efekt pronowotworowy (18). Nasz 

zespół  wykazał  dodatkowo,  że  obecność  mutacji  BRAF  V600E  jest  negatywnym  czynnikiem 

klinicznym, związanym z wcześniejszym wystąpieniem BOTS u pacjentek  (19). Oprócz  KRAS, 

BRAF, BRCA1/2 i TP53, kilka zespołów naukowych zbadało również częstość mutacji w PIK3CA, 

EGFR, CTNNB1, RAD51C, PALB2, CHEK2 i  PTEN w BOTS  (20,21). Niemniej wciąż niewiele 

wiadomo na temat statusu polimorficznego supresorów i onkogenów w guzach granicznych jajnika.

Również aspekt zmian metylacyjnych w guzach jajnika (szczególnie BOTS i lgOvCa) nie 

został  dobrze  zbadany.  Zmiany  we  wzorach  metylacji  DNA  są  kluczowym  mechanizmem 

nowotworzenia. Nieprawidłowa metylacja DNA w guzach może wystąpić wcześniej niż mutacje. 

Co więcej, w niektórych nowotworach ekspresja genów może być nawet częściej zmodyfikowana z 

powodu  zmian  metylacji  niż  poprzez  mutacje  (22,23).  Biorąc  pod  uwagę  zmiany  metylomu, 

zaobserwowano, że surowicze hgOvCa tworzą oddzielny klaster w porównaniu z BOTS i lgOvCa 

(24). Jednak jak dotąd wzory metylacji BOTS i lgOvCa typu surowiczego oceniano wyłącznie za 

pomocą mikromacierzy o niskiej rozdzielczości. Ponadto liczba publikacji naukowych porównująca 

guzy jajnika o różnej agresywności jest wciąż niewielka (24,25). 

Dlatego  celem  niniejszej  pracy  doktorskiej  było  przeanalizowanie  1)  wariantów 

genetycznych w kluczowych genach supresorowych i onkogenach oraz 2) metylomu, w BOTS (w 

podgrupie guzów z mutacją BRAF V600E (BOT.V600E) lub bez niej (BOT)), lgOvCa i hgOvCa.

Status polimorficzny 76 genów został zbadany u 225 pacjentek z guzami jajnika przy użyciu 

dwóch  paneli  genowych oraz  sekwencjonowania  następnej  generacji  (NGS).  Pierwszy z  paneli 

obejmował onkogeny i geny supresorowe nowotworu zaangażowane w rozwój dziedzicznego raka 

jajnika (41 genów) oraz dodatkowo geny CRNDE, IRX5 i CEBPA. Drugi panel zawierał „hot-spoty” 

w genach często zmutowanych w sporadycznych nowotworach ludzkich (37 genów),  z  których 

większość  nie  występowała  w  pierwszym  panelu  genowym.  Poza  dokładnym  badaniem 

polimorfizmów genów i ich związku z różnymi parametrami kliniczno-patologicznymi przy użyciu 

modeli regresji jedno- i wieloczynnikowej, praca doktorska obejmowała potwierdzenie wybranych 

16



wariantów  genów  za  pomocą  sekwencjonowania  Sangera,  a  także  weryfikację,  czy  istnieje 

korelacja  między  obecnością  danego  polimorfizmu  a  zmianami  ekspresji  odpowiadającego  mu 

białka. 

Analiza  metylacyjna  została  przeprowadzona  na  mniejszej  grupie  128  pierwotnych 

surowiczych guzów jajnika, przy użyciu mikromacierzy o wysokiej rozdzielczości. Nasz zespół, 

jako  jeden  z  nielicznych,  przeprowadził  analizy  metylacyjne  DNA nie  tylko  całościowo,  ale 

również  z  podziałem  na  nici  (+)  i  (-).  Uzyskane  wyniki  zweryfikowano  za  pomocą  metylo-

specyficznego PCR połączonego z sekwencjonowaniem Sangera. Ponadto przeprowadzona została 

szczegółowa analiza ontologiczna dla wszystkich porównań guzów. Wykorzystano również modele 

regresji  jedno-  i  wieloczynnikowej  w  celu  znalezienia  najlepszych  markerów  (regionów  o 

znamiennie  zmienionej  metylacji,  DMR,  ang.  differentially  methylated  regions)  oraz  oceny  ich 

przydatności klinicznej.
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Cel pracy

Głównym  celem  pracy  była  charakterystyka  porównawcza  guzów  jajnika:  nisko 

zróżnicowanych  (hgOvCa),  wysoko  zróżnicowanych  (lgOvCa)  oraz  granicznych  (BOTS)  pod 

kątem  parametrów  molekularnych  i  poszukiwanie  cech  związanych  z  transformacją  guzów 

granicznych w nowotwory złośliwe.

Celem szczegółowym omawianego projektu była identyfikacja wariantów polimorficznych 

oraz  zmian  wzoru  metylacji  w  analizowanych  genach  jako  potencjalnych  biomarkerów, 

umożliwiających opracowanie nowych metod diagnostyki, monitorowania i leczenia nowotworów 

jajnika.
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Materiały

W  opisanych  poniżej  badaniach  wykorzystano  DNA/białko  wyizolowane  łącznie  z 

retrospektywnej grupy 225 guzów jajnika, w większości typu surowiczego: 76 BOTS (w tym 53 

BOT bez mutacji  (BOT) i  23 BOT z mutacją  BRAF  V600E (BOT.V600E)),  10 lgOvCa i  139 

hgOvCa. DNA izolowane było zarówno z materiału mrożonego (170 guzów), jak i  z bloczków 

parafinowych (FFPE, 61 guzów), a białko wyłącznie z materiału mrożonego. Pojedyncze próbki 

DNA były izolowane zarówno z materiału mrożonego, jak i  z ich odpowiednika parafinowego. 

Materiał  zbierany  był  w  latach  1995-2015  w  Narodowym  Instytucie  Onkologii  im.  Marii 

Skłodowskiej-Curie  w  Warszawie.  Każdy  z  guzów został  szczegółowo  scharakteryzowany  pod 

kątem kliniczno-patologicznym z precyzyjną oceną odsetka utkania nowotworowego. W opisanych 

poniżej  badaniach  molekularnych  wykorzystano  jedynie  te  guzy,  w  których  odsetek  komórek 

nowotworowych wynosił co najmniej 50%. Zbiory guzów wykorzystane w badaniach opisanych w 

artykułach  tworzących  cykl  oceniany  w  niniejszym  postępowaniu  doktorskim,  różniły  się  pod 

względem jakościowym i  ilościowym pomiędzy pracami.  Dlatego też dokładna charakterystyka 

histopatologiczna grup guzów została przedstawiona w załączonych publikacjach.
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Metody

• Izolacja DNA z materiału mrożonego (QIAmp DNA Mini Kit  (Qiagen)) i  parafinowego 

(MagCore Genomic DNA FFPE One-Step Kit (RBC Biosciences)) oraz ocena jego jakości 

metodą  ilościowego  PCR  (Real-Time  qPCR)  z  wykorzystaniem  własnoręcznie 

zaprojektowanych primerów dla genu GAPDH (26).

• Tworzenie bibliotek do sekwencjonowania następnej generacji (NGS) i wzbogacanie DNA 

w  sekwencje  kodujące  41  genów  (ATM,  ATR,  ATRX,  BAP1,  BARD1,  BCL2L1,  BLM, 

BRCA1,  BRCA2,  BRIP1,  CCNE1,  CHEK1,  CHEK2,  EMSY,  FANCA,  FANCB,  FANCC, 

FANCD2,  FANCE,  FANCF,  FANCG,  FANCI,  FANCL,  FANCM,  IRX5,  MDM2,  MRE11, 

MUTYH,  NBN,  PALB2,  PARP1,  PIK3CA,  PRKDC,  PTEN,  RAD50,  RAD51B,  RAD51C, 

RAD51D,  RAD54L,  RPA1,  SEM1,  TP53),  związanych  z  rozwojem  dziedzicznego  raka 

jajnika (panel Ion AmpliSeq™ Comprehensive Ovarian Cancer Research Panel  (Thermo 

Fisher Scientific) + CRNDE, IRX5 i CEBPA, (SeqCap EZ Enrichment System (Roche)) oraz 

przy użyciu panelu KAPA HyperPETE Hot Spot Panel (AKT1, ALK, APC, ATM, BRAF, 

BRCA1,  CDKN2A, CTNNB1,  EGFR, ERBB2,  ESR1,  FBXW7,  FGFR1,  FGFR2,  FGFR3, 

GNA11,  GNAQ,  GNAS,  HRAS,  IDH1,  IDH2,  JAK2,  KIT,  KRAS,  NF1,  NRAS,  NTRK3, 

PDGFRA, PIK3CA, POLE, PTCH1, PTEN, RET, STK11, TP53, TSC1, TSC2) (Roche), w 

którym  znajdowały  się  tzw.  gorące  punkty  w  genomie  („hot-spot”),  będące  często 

pojawiającymi się zmianami genetycznymi w licznych nowotworach.

• Analiza DNA techniką NGS na platformach iSeq100 i NovaSeq 6000 (Illumina) w trybie 

sparowanych końców. Ocena jakości wyników sekwencjonowania narzędziami FASTQC i 

Trimmomatic. Mapowanie do sekwencji referencyjnej programami STAR i HISAT2, ocena 

jakości mapowania programami SAMTOOLS, GATK i QUALIMAP. Identyfikacja mutacji i 

polimorfizmów o silnym/krytycznym (HIGH) lub umiarkowanym (MODERATE) wpływie 

na funkcje kodowanych białek (wg bazy ENSEMBL) programem Variant Effect Predictor 

(VEP) (ENSEMBL). Analiza bioinformatyczna i statystyczna (ocena istotności statystycznej 

zmian częstości występowania mutacji w poszczególnych genach pomiędzy BOTS, lgOvCa 

i  hgOvCa  testem  Chi-kwadrat  i/lub  testem  dokładnym  Fishera)  przy  użyciu  autorskich 

programów  napisanych  w  językach  Bash,  R  i  Python  przez  dr.  Łukasza  Szafrona. W 

analizach bioinformatycznych  wszystkie warianty genetyczne występujące rzadziej niż w 

10%, odczytów zostały odfiltrowane. Zmiany takie mogły wynikać z błędów polimerazy 

DNA.  Gdyby  nawet  nie  były  one  błędami,  to  i  tak  nie  udałoby  się  ich  potwierdzić 
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sekwencjonowaniem Sangera (zbyt niska częstość ich występowania uniemożliwiłaby ich 

dostrzeżenie na chromatogramie).

• Potwierdzenie  wybranych  wariantów  genetycznych  metodą  gradientowego  PCR  w 

połączeniu z analizą produktów na żelu agarozowym oraz sekwencjonowaniem Sangera z 

wykorzystaniem własnoręcznie zaprojektowanych starterów.  Amplifikacji DNA dokonano 

przy użyciu polimerazy AmpliTaq Gold (Thermo Fisher Scientific).  Do enzymatycznego 

oczyszczanie produktów PCR wykorzystano zestaw ExoSAP-IT (Thermo Fisher Scientific). 

Sekwencjonowanie  DNA metodą  Sangera  przeprowadzono  z  użyciem  zestawu  BigDye 

Terminator  v3.1  Cycle  Sequencing  Kit  (Thermo  Fisher  Scientific),  a  do  oczyszczania 

produktu  po  sekwencjonowaniu  użyto  zestawu  ExTerminator  (A&A  Biotechnology). 

Odczytu wyników sekwencjonowania dokonano na sekwenatorze 3500 Genetic Analyzer 

(Thermo).

• Izolacja  białka całkowitego.  Lizaty białkowe uzyskano poprzez homogenizację  tkanki w 

buforze RIPA (Thermo) z dodatkiem inhibitorów proteaz/fosfataz (Halt Protease Inhibitor 

Cocktail; Thermo). Pomiaru stężenia białka dokonano za pomocą metody kolorymetrycznej 

BCA (Sigma), z wykorzystaniem białka BSA (ang. bovine serum albumin) jako wzorca do 

krzywej standardowej.  Poziom absorbancji  mierzono na spektrofotometrze przy długości 

540 nm.

• Analizy SDS-PAGE oraz Western Blot dla białek NBN, CHEK2, TP53, FANCI, FAND2, 

CHEK1. Jako kontroli ładowania użyto membran wybarwionych 0,1% PonceauS (Sigma) w 

5%  roztworze  kwasu  octowego,  oraz  przeciwciał  skierowanych  przeciwko  β-aktynie 

(Thermo)  i  winkulinie  (Thermo).  Oba  białka  są  budulcami  cytoszkieletu.  Sygnał 

chemiluminescencyjny dla wszystkich białek sczytywany był na aparacie UVP ChemStudio 

Imaging System (Analytik Jena).

• Konwersja  bisulfidowa  DNA  z  wykorzystaniem  zestawu  EZ  DNA  Methylation  Kit 

(ZymoResearch).

• Ocena jakości konwersji bisulfidowej dla kilku przypadków raków jajnika i BOT poprzez 

wykonanie  metylo-specyficznego  PCR  z  primerami  komplementarnymi  do  regionu 

promotorowego  genu CRNDE.  Amplifikacji  DNA  dokonano  przy  użyciu  polimerazy 

AmpliTaq Gold (Thermo Fisher Scientific). Do enzymatycznego oczyszczanie produktów 

PCR  wykorzystano  zestaw  ExoSAP-IT  (Thermo  Fisher  Scientific).  Sekwencjonowanie 

DNA metodą Sangera przeprowadzono z użyciem zestawu BigDye Terminator v3.1 Cycle 
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Sequencing  Kit  (Thermo  Fisher  Scientific),  a  do  oczyszczania  produktu  po 

sekwencjonowaniu użyto zestawu ExTerminator (A&A Biotechnology). Odczytu wyników 

sekwencjonowania dokonano na sekwenatorze 3500 Genetic Analyzer (Thermo).

• Hybrydyzacja DNA po konwersji bisulfidowej do mikromacierzy metylacyjnych Infinium® 

Methylation  EPIC  (Illumina)  (zgodnie  z  protokołem  przygotowanym  przez  producenta 

mikromacierzy, we współpracy z dr hab. Roksaną Iwanicką-Nowicką). Odczyt wyników z 

wykorzystaniem  skanera  mikromacierzy  iScan  (Illumina).  Analiza  bioinformatyczna  i 

statystyczna  w  środowisku  R  z  wykorzystaniem  narzędzi  dostępnych  w  pakiecie 

Bioconductor (dr Łukasz Szafron)

• Potwierdzenie  zmian  metylacyjnych  w  wybranych  miejscach  genomu  metodą 

gradientowego  metylo-specyficznego  PCR  w  połączeniu  z  analizą  produktów  na  żelu 

agarozowym  oraz  sekwencjonowaniem  Sangera  z  wykorzystaniem  własnoręcznie 

zaprojektowanych starterów (przy użyciu w.w. zestawów i maszyn).
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Wyniki

Publikacja 1) 

An Analysis of Genetic Polymorphisms in 76 Genes Related to the Development of 

Ovarian Tumors of Different Aggressiveness

W badaniach z wykorzystaniem paneli genowych skupiono się na analizie dwóch typów 

wariantów  genetycznych:  SNP  (polimorfizmów  jednonukleotydowych,  ang.  single-nucleotide 

polymorphisms) oraz non-SNP (głównie insercje, delecje i duplikacje,  ang. non-single-nucleotide 

polymorphisms).  Warianty  były  również  rozpatrywane  na  podstawie  ich  wpływu  na 

strukturę/funkcję kodowanego białka. Tym samym wyróżniono dwie główne grupy polimorfizmów: 

o  umiarkowanym  (“MODERATE”)  oraz  silnym  (“HIGH”)  wpływie  na  strukturę/funkcję 

kodowanych białek. Obie grupy wariantów były analizowane zarówno osobno, jak i łącznie. Do 

zmian  o  umiarkowanym wpływie  zostały  zaklasyfikowane:  warianty  zmiany  sensu  (skutkujące 

powstaniem innego aminokwasu, ang.  missense variants), insercje i delecje niezmieniające ramki 

odczytu (trzynukleotydowe lub będące wielokrotnością trójki). Do zmian o charakterze “HIGH” 

zaliczono:  insercje  oraz  delecje  niebędące  wielokrotnością  trójki  (najczęściej  były  to  zmiany 

jednonukleotydowe), przedwczesne pojawienie się kodonu STOP, utrata kodonu START lub STOP, 

obecność wariantów w miejscach splicingowych na końcu 3’ oraz 5’.

Z wykorzystaniem panelu 44 genów zidentyfikowano łącznie 85 unikatowych, wcześniej 

nieopisanych wariantów genetycznych (71 SNP i 14 non-SNP). Biorąc pod uwagę wszystkie grupy 

guzów oraz wszystkie typy wariantów (SNP i non-SNP, zarówno o umiarkowanym, jak i silnym 

wpływie na strukturę/funkcję kodowanego białka) najczęściej zmienionymi genami były  BRCA1, 

BRCA2,  FANCA,  SEM1  oraz  TP53.  Przy  uwzględnieniu  wariantów o  jedynie  silnym  wpływie 

(“HIGH”), największą częstością zmian, wyłącznie w grupie hgOvCa, charakteryzowały się geny 

BRCA1 oraz TP53. Co ciekawe liczba SNP, przede wszystkim o charakterze “MODERATE”, była 

istotnie wyższa w grupie BOT bez mutacji BRAF V600E w porównaniu do wszystkich pozostałych 

grup guzów. Z kolei guzy BOT.V600E charakteryzowały się istotnie niższą liczbą takich SNP niż 

hgOvCa. Jednakże w grupie hgOvCa liczba wariantów genetycznych wyłącznie o silnym wpływie 

(zarówno  SNP,  jak  i  non-SNP)  była  istotnie  wyższa  w  porównaniu  do  pozostałych  grup 

nowotworów (poza porównaniem lgOvCa vs hgOvCa dla SNP o charakterze „HIGH”).
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W  przypadku  panelu  „hot-spot”  odkryto  82  unikatowe,  wcześniej  nieopisane  warianty 

genetyczne (75 nowych SNP i 7 nowych non-SNP).  Biorąc pod uwagę wszystkie grupy guzów 

oraz  wszystkie  typy  wariantów  (SNP  i  non-SNP,  „HIGH”  i  „MODERATE”)  najczęściej 

zmienionymi genami były  PTCH1 (we wszystkich grupach guzów) i  TP53 (głównie w hgOvCa). 

Przy  porównaniu  obu  paneli  genowych,  wyniki  uzyskane  w  panelu  „hot-spot”  różniły  się  od 

wyników  uzyskanych  dla  panelu  44-genów  pod  względem  częstości  występowania  SNP  o 

charakterze „MODERATE”, lub „HIGH” i „MODERATE” analizowanych wspólnie w grupie BOT. 

W panelu „hot-spot” liczba takich SNP w BOT była istotnie niższa niż w obu grupach raków. 

Natomiast w panelu 44-genowym SNP o ww. charakterze występowały istotnie częściej w BOT w 

porównaniu do pozostałych grup guzów. Taka rozbieżność wynika m.in. z 10-krotnie wyższego 

pokrycia genomu w panelu 44-genów (ok. 360 tys. bp) w porównaniu do panelu hot-spot (ok.36 tys. 

bp),  który  uwzględniał  tylko  miejsca,  gdzie  występują  znane,  powtarzające  się  w  różnych 

nowotworach  mutacje.  Jednak  te  rozbieżności  między  dwoma  panelami  genowymi  nie 

występowały gdy brano pod uwagę tylko SNP o silnym wpływie lub wszystkie warianty non-SNP o 

charakterze “HIGH” lub „HIGH” i “MODERATE”. W tym przypadku, w obu panelach genowych, 

zmiany te występowały istotnie częściej w grupie hgOvCa w porównaniu do BOTS. 

Wszystkie warianty SNP i non-SNP przypadające na dany na gen i na daną próbkę zostały 

również zsumowane i zbinaryzowane (porównanie braku (0) i obecności jakiegokolwiek wariantu 

genetycznego (1) w analizowanym genie w badanej próbce). Analizy statystyczne przeprowadzone 

po zastosowaniu tego algorytmu (przy użyciu testów Chi kwadrat i dokładnego Fishera) wykazały, 

że genem najbardziej różnicującym mniej agresywne nowotwory (BOT, BOT.V600E i lgOvCa) od 

najbardziej agresywnych (hgOvCa) był  TP53,  który  był istotnie częściej zmutowany w hgOvCa. 

Wyniki te uzyskano dla obu paneli oraz obu grup polimorfizmów (zarówno „MODERATE” jak i 

„HIGH” i „MODERATE” analizowanych wspólnie). Jedyny wyjątek od tej reguły został znaleziony 

dla zmian o silnym wpływie w porównaniu lgOvCa vs. hgOvCa w panelu „hot-spot”, gdzie nie 

zaobserwowano  istotności  statystycznej.  Powodem  była  zapewne  niewielka  liczebności  grupy 

lgOvCa  oraz  obecność  w  jednym  przypadku  lgOvCa  dwóch  zmian  SNP o  charakterze  HIGH 

(chr17:g.7674921C>A, p.Glu204Ter  i  chr17:g.7676218C>A, p.Glu51Ter).   Zgodnie  z  literaturą, 

warianty w genie  TP53 nie  występują/występują bardzo rzadko w BOTS oraz lgOvCa  (15,27). 

Nasze badania to potwierdziły. Warianty w TP53 praktycznie nie wystąpiły w tych nowotworach. 

Wyjątkiem były dwie próbki BOT (zmiany w TP53 dla tych BOT zidentyfikowane zostały w obu 

panelach  genowych)  oraz  1  przypadek  lgOvCa  z  ww.  dwoma  wariantami  SNP o  charakterze 

„HIGH” (tylko w panelu „hot-spot”). Żadnego z tych SNP obecnego w lgOvCa nie znaleziono w 
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panelu  44-genowym,  prawdopodobnie  ze  względu  na  niewielką  częstość  ich  występowania 

(odsetek zmian w danym miejscu w genomie), wynoszącą odpowiednio 11% i 14%, oraz odmienną 

technikę wzbogacania DNA (sondy Sequence Capture w panelu 44 genów oraz technika PETE 

(ang. Primer Extension Target Enrichment) w panelu „hot-spot”).

Innymi genami,  o  których warto wspomnieć,  są  BRCA1  i  BRCA2.  W panelu 44 genów 

zarówno  BRCA1 jak  i  BRCA2 były  częściej  zmienione  w  BOT niż  w  hgOvCa  (głównie  dla 

wariantów  “MODERATE”).  Jednakże  właściwie  wszystkie  te  warianty  miały  charakter  zmian 

jednonukleotydowych (SNP).  Gdy pod uwagę były  brane  tylko warianty  o  silnym wpływie  na 

strukturę/funkcję  kodowanych  białek  (“HIGH”),  ich  liczba  była  istotnie  wyższa  w  hgOvCa  w 

porównaniu do pozostałych grup guzów (tylko dla BRCA1, nie dla BRCA2) w obu panelach. Warto 

zaznaczyć, że w samym panelu “hot-spot”, gen BRCA2 nie został uwzględniony, podczas gdy liczba 

polimorfizmów w  BRCA1 była istotnie wyższa w hgOvCa niż w BOT, niezależnie od tego, czy 

uwzględniono tylko warianty  o  silnym wpływie  (“HIGH”),  czy wszystkie  warianty  genetyczne 

(“HIGH”/“MODERATE”). W panelu analizującym „hot-spoty” nie stwierdzono żadnych zmian w 

BRCA1 zarówno o umiarkowanym, jak i o silnym wpływie w grupach BOT i lgOvCa. Jeden SNP o 

charakterze “MODERATE” (chr17:g.43057132C>A) był znaleziony w jednej próbce BOT.V600E. 

Wyniki uzyskane dla panelu 44 genów są zgodne z wynikami zawartymi w pracy z 2020 r., gdzie na 

dużej grupie pacjentów z guzami jajnika stwierdzono, że częstość zmian w genach  BRCA1/2 jest 

podobna w hgOvCa i  BOTS (odpowiednio 30,9% i  28,9%)  (28).  Niemniej  wyniki uzyskane w 

panelu  „hot-spot”  zgadzają  się  z  obecnym  stanem  wiedzy,  który  mówi,  że  zmiany  w  genach 

BRCA1/2  prowadzące do upośledzenia działania funkcji BRCA1 i BRCA2 występują głównie w 

zaawansowanych rakach jajnika (3). Należy też pamiętać, że rozbieżności w wynikach uzyskanych 

dla każdego z paneli mogą być spowodowane powyżej opisanymi różnicami w pokryciu genomu 

(10-krotnie większy obszar pokrycia dla panelu 44 genów), oraz różnymi technikami tworzenia 

bibliotek wykorzystywanymi w obu panelach.

Na  uwagę  zasługuje  również  gen  KRAS,  w  którym  warianty  o  umiarkowanym  lub 

silnym/umiarkowanym  wpływie  na  kodowane  białko,  różnicowały  najlepiej  BOT (bez  mutacji 

BRAF V600E) od wszystkich innych grup nowotworów z wyjątkiem lgOvCa.  KRAS był częściej 

zmutowany w BOT i lgOvCa niż w grupach BOT.V600E lub hgOvCa. Potwierdza to podobieństwo 

molekularne między tymi dwiema grupami guzów. Jednocześnie taki wynik pokazuje, że w BOT 

bez wariantu V600E w genie  BRAF, obecne są mutacje aktywujące w  KRAS. Dla grupy lgOvCa 

charakterystyczna  była  również  większa  częstość  zmutowania  w dwóch innych genach,  ATM i 

NRAS.  ATM  był  częściej  zmieniony w lgOvCa niż  w grupie BOT.V600E,  ale  ta  prawidłowość 
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ograniczała się tylko do wariantów o umiarkowanym wpływie (p = 0,036). Jeśli chodzi o  NRAS, 

przede wszystkim zmiany typu “MODERATE” występowały istotnie  częściej  w lgOvCa niż  w 

trzech pozostałych grupach nowotworów.

Podobnie  do  KRAS,  geny kodujące białka  zaangażowane w ubikwitynację  były  częściej 

zmienione w grupie BOT i odróżniały te guzy od raków jajnika. W dwóch genach zaangażowanych 

w ubikwitynację (FANCB i  SEM1) warianty o charakterze “MODERATE” były zidentyfikowane 

częściej w BOT niż w rakach (SEM1) lub tylko w porównaniu do hgOvCa (FANCB). Warianty w 

tych dwóch genach nie różnicowały BOT od BOT.V600E.

W  analizie  regresji  przeprowadzonej  dla  obu  paneli  genowych  skupiono  się  tylko  na 

wynikach, które były zgodne dla analiz jedno i wieloczynnikowych. Z obu paneli genowych, po 

uwzględnieniu wartości pod krzywą ROC (AUC, służącą do oceny zdolności dyskryminacyjnych 

modeli) oraz wartości p, najlepszym markerem dla raków jajnika były zmiany w genie FANCI. Gen 

ten jest doskonałym kandydatem na marker prognostyczny u pacjentek z zaawansowanym rakiem 

jajnika, w którym nie stwierdzono akumulacji białka TP53. Obecność wariantów w  FANCI była 

lepszym predyktorem wznowy niż choroba resztkowa (RT, ang.  residual tumor) (HR 40,02 i p = 

0,0022 dla FANCI vs HR 34,1 i p = 0,0077 dla RT >= 2cm oraz HR 22,77 i p = 0,01 dla RT < 2cm), 

co  czyni  go  negatywnym  markerem  prognostycznym.  Poza  FANCI obiecującymi  markerami 

prognostycznymi dla hgOvCa były FANCF i TSC2. Natomiast obecność wariantów w BRCA2 była 

wartościowym predyktorem odpowiedzi na leczenie. Dla grupy BOTS jedynym genem, który został 

zidentyfikowany w analizach regresji,  był  PARP1.  Niemniej  okazał  się  on również przydatnym 

markerem prognostycznym. Warianty w tym genie wpływały na zwiększone ryzyko wznowy (HR 

6,02, p = 0,01). Co więcej, model dla tego genu odznaczał się bardzo dobrymi właściwościami 

dyskryminacyjnymi  (AUC  dla  modelu  jednoczynnikowego:  85%,  wieloczynnikowego:  88,1%. 

Czułość na poziomie 1, natomiast specyficzność = 0,729).

W celu potwierdzenia wpływu wybranych wariantów genetycznych na ekspresję odpowiadających 

im białek przeprowadzono analizy Western blot (WB) dla:

• NBN (wariant non-SNP: chr8:g.89971217_89971221del; p.Lys219AsnfsTer16)

• CHEK2 (wariant non-SNP: chr22:g.28695869del; p.Thr367MetfsTer15)

• TP53 (warianty zmiany sensu (SNP) skutkujące akumulacją białka: chr17:g.7675085C>T; 

p.Cys176Tyr,  chr17:g.7673824C>G;  p.Gly266Arg,  chr17:g.7676040C>G;  p.Arg110Pro, 

chr17:g.7673776G>A; p.Arg282Trp)
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• TP53 (warianty non-SNPs: chr17:g.7674900dup; p.Thr211AsnfsTer5, chr17:g.7670686del; 

p.Arg342GlufsTer3,  3chr17:g.7674241del;  p.Cys242AlafsTer5,  chr17:g.7676078del; 

p.Pro98LeufsTer25, chr17:g.7676041_7676042insTTTC; p.Arg110GlufsTer40.

• FANCI (SNP: 89285210C>T; p.Leu605Phe)

• FANCD2 (ocena ekspresji FANCD2 w próbkach z ww. wariantem FANCI p.Leu605Phe, 

oraz  niezależne  przeanalizowanie  ekspresji  FANCD2  z  obecnym  SNP: 

chr3:g.10073349G>T; p.Gly901Val)

• CHEK1 (SNP: chr11:g.125625996G>A; p.Trp79Ter)

W próbkach posiadających wyżej wymienione warianty non-SNP w genach NBN, CHEK2 

oraz TP53 zaobserwowano obniżoną ekspresję/brak ekspresji białek kodowanych przez te geny. Dla 

próbek z wariantami zmiany sensu w genie  TP53 zaobserwowano zwiększony sygnał dla białka 

TP53. Natomiast dla białek FANCI, FANCD2 oraz CHEK1 uzyskano nietypowe wyniki. Guzy z 

wariantem  p.Leu605Phe  w  FANCI,  w  których  nie  stwierdzono  dodatkowo  obecności  żadnych 

wariantów polimorficznych w genach BRCA1/2, nie wykazywały ekspresji zmutowanego FANCI. 

Inaczej sytuacja wyglądała w próbkach z jakimikolwiek wariantami w genach BRCA1/2. W takim 

przypadku ekspresja zmutowanego FANCI była wysoka. Ponadto ta sama analiza WB ujawniła 

korelację między ekspresją białek FANCI i FANCD2 (będącego partnerem molekularnym FANCI 

(29)),  niezależnie  od  tego,  czy  w  FANCD2  występowały  jakiekolwiek  warianty  genetyczne. 

Obecność  najczęściej  występującego  wariantu  chr3:g.10073349G>T (p.Gly901Val)  w  FANCD2 

również  nie  korelowała  z  jego  ekspresją.  Wyniki  z  analiz  WB uzyskane  dla  FANCI,  razem z 

wynikami regresji,  jednoznacznie wskazują na istotną rolę,  jaką FANCI odgrywa u pacjentek z 

rakiem jajnika i  pokazują,  że działanie tego genu/białka uzależnione jest  od tła  molekularnego, 

przede wszystkim od aktywności kluczowych supresorów BRCA1/2 i TP53.

Ciekawy  wynik  uzyskano  również  dla  SNP w  genie  CHEK1 (chr11:g.125625996G>A, 

p.Trp79Ter), prowadzącego do powstania przedwczesnego kodonu terminacyjnego. W guzach, w 

których  zmiana  ta  występowała  z  dużą  częstością  zaobserwowano  niespodziewanie  wysoką 

ekspresję  białka  CHEK1  (im  wyższy  odsetek  zmienionego  allelu,  tym  silniejszy  sygnał  dla 

CHEK1). Na podstawie dostępnych danych literaturowych oraz naszych własnych badań nie sposób 

jednoznacznie stwierdzić,  czy CHEK1 pełni  funkcję onkogenu czy supresora w guzach jajnika. 

Niemniej jednak dalsze badania jego wariantów wydają się interesujące w kontekście potencjalnych 

terapii  ukierunkowanych  z  użyciem  preksasertybu,  selektywnego  inhibitora  CHEK1.  Badania 

wykazały, że jego zastosowanie, jako pojedynczego leku lub w połączeniu z inhibitorami PARP, 
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wydłużało przeżycie pacjentów z hgOvCa (30). Ta kombinacja inhibitorów może być potencjalnie 

przydatna  w  leczeniu  guzów  granicznych,  ponieważ,  jak  wyżej  wspomniano,  polimorfizmy  w 

PARP1 zostały zidentyfikowane w naszych badaniach jako negatywny marker prognostyczny w 

BOTS.  Dodatkowo  niektóre  z  naszych  BOTS  zawierały  opisany  powyżej  wariant  CHEK1 

p.Trp79Ter.
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Publikacja 2) 

The Diversity of Methylation Patterns in Serous Borderline Ovarian Tumors and 

Serous Ovarian Carcinomas

W tym badaniu,  ze  względu na wysokie  koszty  eksperymentu,  wykorzystano wyłącznie 

część pierwotnych guzów jajnika typu surowiczego. Badanie obejmowało analizę pojedynczych 

miejsc  metylacji  (CpG/DMP,  ang. differentially  methylated  probes),  całych  regionów  genomu, 

niezależnych  od  lokalizacji  genów  (DMR,  ang.  differentially  methylated  regions)  oraz 

funkcjonalnych regionów genowych (złożonych z CpG w obrębie promotorów (proksymalnego i 

dystalnego),  egzonów, intronów, cds (ang.  coding sequence),  lncRNA, a także 3’ i  5’ UTRów). 

Ponadto skupiono się na analizie metylacyjnej w obrębie obu nici DNA jednocześnie, jak również 

niezależnie dla poszczególnych nici (+ i -).

W  pierwszej  kolejności  przeanalizowano  status  metylacji  genów  osi  TP53-MDM2-

CDKN1A. W grupie lgOvCa (zgodnie z obecnym stanem wiedzy) nie zaobserwowano akumulacji 

białka  TP53,  która  jest  częstym zjawiskiem w zaawansowanych rakach jajnika (hgOvCa)  (31). 

Jednak ponieważ zmiany metylacyjne mogą poprzedzać wystąpienie mutacji (22,23), naszym celem 

było  sprawdzenie,  czy  metylacja  TP53,  jak  również  jego  bezpośrednich  partnerów  (MDM2 i 

CDKN1A) jest istotnie zmieniona w mniej zaawansowanych guzach (BOTS i lgOvCa). W lgOvCa 

zaobserwowano  hipermetylację  w  prawie  każdym  regionie  TP53  (największe  zmiany  były 

widoczne w promotorach i pierwszym egzonie, czyli regionach mających najsilniejszy wpływ na 

późniejszą ekspresję białka (32,33)). Co więcej, metylacja wszystkich egzonów TP53 była istotnie 

wyższa w lgOvCa w porównaniu do hgOvCa. W przypadku onkogenu MDM2 zaobserwowano 

odwrotny  efekt,  ale  tylko  w  porównaniach  hgOvCa  vs  BOTS,  i  tylko  w  regionie  bliższego 

promotora. Jeśli chodzi o  CDKN1A, który koduje białko supresorowe p21, wbrew oczekiwaniom 

zaobserwowano  niższe  poziomy  metylacji  w  obrębie  proksymalnego  promotora  i  pierwszego 

egzonu w lgOvCa i hgOvCa w porównaniu z BOTS. Co ciekawe, pierwszy egzon genu CDKN1A 

był bardziej  hipometylowany w lgOvCa niż w hgOvCa. Ponadto nie zidentyfikowano różnic w 

metylacji w żadnym z trzech wyżej wymienionych genów między BOT a BOT.V600E.

Całościowa analiza miejsc metylacyjnych (zarówno CpG jak i DMR) wykazała globalną 

hipometylację  genomu w rakach  (szczególnie  w  hgOvCa)  w  porównaniu  do  mniej  złośliwych 

guzów. Zgodnie z obecnym stanem wiedzy najwięcej  różnic metylacyjnych (zarówno w liczbie 

CpG jak i DMR) zaobserwowano pomiędzy lgOvCa a hgOvCa oraz pomiędzy BOT a hgOvCa. Co 

ciekawe, grupa BOT.V600E cechowała się najniższą liczbą istotnie zmienionych CpG i DMR w 
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porównaniu  do  wszystkich  pozostałych  grup  guzów.  Co  więcej,  w  grupie  BOT.V600E 

zaobserwowano hipometylację genomu w porównaniu z BOT. Mogłoby to sugerować ich większą 

aktywność metaboliczną i agresywność. Przy analizie DMR, które różnicowały poszczególne grupy 

guzów, zaobserwowano, że 10 kolejnych, najbardziej zmienionych DMRów różnicujących BOT 

(bez  mutacji  BRAF V600E)  od  lgOvCa,  znajdowało  się  na  tym  samym  obszarze  genomu  na 

chromosomie  6  o  wielkości  3,5  mln  par  zasad,  obejmującym  region  MHC  (ang.  major 

histocompatibility  complex).  W żadnym z  5  pozostałych  porównań  guzów nie  zaobserwowano 

takiego zjawiska. 

Analizy  ontologiczne  wykazały  kilka  głównych  grup  procesów,  które  występowały  we 

wszystkich porównaniach guzów. Były to procesy związane z różnicowaniem/rozwojem, adhezją, 

układem nerwowym, cyklem komórkowym oraz metabolizmem RNA. Zaobserwowano również 

terminy  ontologiczne  charakterystyczne  tylko  dla  wybranych  grup  guzów,  i  tak  np.  procesy 

związane  z  metabolizmem  kwasów  tłuszczowych  i  adipogenezy  były  wzbogacone  w  geny 

hipermetylowane tylko w grupie BOT, a procesy związane z białkiem KRAS oraz EMT (przejściem 

epitelialno-mezenchymalnym, ang.  epithelial-mesenchymal transition) były charakterystyczne dla 

porównania  lgOvCa  vs  hgOvCa  (hipermetylacja  genów  zaangażowanych  w  te  procesy  była 

charakterystyczna dla grupy lgOvCa).

W analizach  regresji  ponownie  skupiono  się  na  wynikach  zgodnych  dla  analiz  jedno  i 

wieloczynnikowych. Ze względu na ogromną liczbę uzyskanych DMRów, które mogłyby zostać 

potencjalnymi  markerami,  zdecydowano  się  zastosować  filtrowanie  istotności  statystycznej  w 

poszczególnych analizach (w rakach, dla analiz regresji Cox’a i logistycznej były to odpowiednio 

wartości p < 0.0005 i p < 0.005. Natomiast ze względu na mniejszą liczbę przypadków, w BOTS 

zdecydowano  się  wszędzie  zostawić  wartość  p  <  0,05).  Tym  sposobem  uzyskano  listę 

kilkudziesięciu najbardziej obiecujących genów, których zmieniona metylacja istotnie wpływała na 

przeżycie  i  wznowę  (hgOvCa),  odpowiedź  na  leczenie  (hgOvCa)  i  ryzyko  wystąpienia 

mikroinwazji/wszczepów (BOTS).  Dla BOTS nie uzyskano żadnych znamiennych wyników dla 

analiz  prognostycznych.  W  BOTS  najlepszymi  zdolnościami  dyskryminacyjnymi 

charakteryzowały  się  DMRy  w  obrebie  genów  BAIAP3,  IL34,  WNT10A,  NEU1  i SLC44A4. 

Natomiast w hgOvCa były to DMRy w genach HMOX1, TCN2, PES1, RP1-56J10.8, ABR, NCAM1, 

RP11-629G13.1, AC006372.4 i NPTXR oraz w jednym regionie międzygenowym na chromosomie 

16 (pojedynczy CpG na nici (-); chr16:g.(−)880831–880831).
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Publikacja 3) Edytorial

Special Issue: Biomarkers and Early Detection Strategies of Ovarian Tumors

Praca stanowi wprowadzenie do specjalnego wydania czasopisma International Journal of 

Molecular  Sciences,  jak  również  zawiera  podsumowanie  aktualnej  wiedzy  nt.  występowania, 

czynników  ryzyka,  prewencji,  diagnostyki  oraz  leczenia  (chemioterapia  oraz  terapie 

ukierunkowane) raków jajnika.
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Wnioski

• Analiza  wariantów  polimorficznych  z  wykorzystaniem  2  paneli  genowych  uwidoczniła 

wiele genów, które różnicują wszystkie grupy analizowanych guzów. Poza mutacjami w 

genach TP53 i BRCA1, które istotnie częściej występowały w najbardziej zaawansowanych 

rakach jajnika, wykazano, że warianty polimorficzne w innych genach wydają się odgrywać 

ważną rolę w BOT (KRAS) i  w lgOvCa (KRAS  i  NRAS),  ale nie w hgOvCa, co po raz 

kolejny  dowodzi,  że  guzy  graniczne  i  lgOvCa  są  ze  sobą  molekularnie  spokrewnione. 

Ponadto,  geny  zaangażowane  w  ubikwitynację  (SEM1,  FANCB)  również  były  istotnie 

częściej zmienione w grupie BOT. Poza wariantami w KRAS i BRAF, żaden z przebadanych 

genów nie różnicował BOT od BOT.V600E.

• Znaleziono markery prognostyczne o dużych zdolnościach dyskryminacyjnych dla BOTS i 

hgOvCa. Dla hgOvCa najlepszym markerem były zmiany w genie  FANCI, natomiast dla 

BOTS była to obecność SNP w genie PARP1. Co więcej, wartość genu FANCI jako markera, 

jak również ekspresja białka FANCI,  były związane ze statusem kluczowych supresorów 

TP53 i BRCA1/2.

• Hipometylacja  genomu zwiększa  się  wraz  ze  wzrastającą  agresywnością  guzów jajnika, 

będąc najsilniejszą w hgOvCa. Grupa guzów BOT.V600E odbiega pod względem metylacji 

nie  tylko  od  raków,  ale  również  od  BOT  bez  mutacji  BRAF V600E.  W guzach  tych 

zaobserwowano  najmniejszą  liczbę  CpG  i  DMR  o  znamiennie  zmienionej  metylacji  w 

porównaniu ze wszystkimi innymi grupami.

• Pomimo nielicznych mutacji  (dwóch SNP zidentyfikowanych wyłącznie  w panelu  „hot-

spot”)  oraz  braku  akumulacji  białka  TP53  w  grupie  lgOvCa,  metylacja  tego  genu  jest 

istotnie  wyższa  w  tej  grupie  guzów,  nie  tylko  w  porównaniu  z  BOTS,  ale  również  z 

hgOvCa. Może to oznaczać, że w lgOvCa inaktywacja supresora TP53 dokonuje się przede 

wszystkim na drodze epigenetycznej, a nie w wyniku mutacji.

• Zmiany  metylacyjne  w  genach  związanych  z  układem  odpornościowym  (i 

mikrośrodowiskiem  guza)  prawdopodobnie  odgrywają  kluczową  rolę  w  transformacji 

guzów granicznych do lgOvCa,  gdyż 10 najbardziej  zmienionych DMR, w porównaniu 

BOT vs lgOvCa, znajdowało się na 3,5-milionowym obszarze genomu na chromosomie 6 

(region  MHC).  Co  więcej,  jednym  z  markerów  o  najlepszych  zdolnościach 

dyskryminacyjnych  w  grupie  BOTS  były  zmiany  metylacyjne  w  obrębie  genu  IL34, 
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kodującego  interleukinę  34,  wpływającą  na  różnicowanie  makrofagów  w  kierunku 

immunosupresyjnej populacji TAM (ang.  tumor-associated macrophages). Hipermetylacja 

DMRów w obrębie  IL34  (która najprawdopodobniej prowadzi do zmniejszonej  ekspresji 

IL34), była  korzystnym  czynnikiem  predykcyjnym,  zmniejszającym  ryzyko  powstania 

mikroinwazji i wszczepów w guzie.

• Poza wspomnianą  wyżej  IL34,  zmiany metylacyjne  w wielu  innych genach okazały  się 

dobrymi  markerami  predykcyjnymi  (zarówno  dla  hgOvCa,  jak  i  BOTS)  lub 

prognostycznymi (hgOvCa).
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Abstract: Borderline ovarian tumors (BOTS) are rare neoplasms of intermediate aggressiveness
between cystadenomas and low-grade ovarian cancers (lgOvCa), which they share some molecular
resemblances with. In contrast to the most frequent and well-described high-grade ovarian carcino-
mas (hgOvCa), the molecular background of BOTS and lgOvCa is less thoroughly characterized. Here,
we aimed to analyze genetic variants in crucial tumor suppressors and oncogenes in BOTS (with or
without the BRAF V600E mutation), lgOvCa, and hgOvCa in two gene panels using next-generation
sequencing. Then, we verified the existence of selected polymorphisms by Sanger sequencing. Finally,
Western blot analyses were carried out to check the impact of the selected polymorphisms on the
expression of the corresponding proteins. Our study contributes to the molecular characterization
of ovarian neoplasms, demonstrating divergent polymorphic patterns pointing to distinct signaling
pathways engaged in their development. Certain mutations seem to play an important role in BOTS
without the BRAF V600E variant (KRAS) and in lgOvCa (KRAS and NRAS), but not in hgOvCa.
Additionally, based on multivariable regression analyses, potential biomarkers in BOTS (PARP1) and
hgOvCa (FANCI, BRCA2, TSC2, FANCF) were identified. Noteworthy, for some of the analyzed genes,
such as FANCI, FANCD2, and FANCI, FANCF, TSC2, the status of BRCA1/2 and TP53, respectively,
turned out to be crucial. Our results shed new light on the similarities and differences in the poly-
morphic patterns between ovarian tumors of diverse aggressiveness. Furthermore, the biomarkers
identified herein are of potential use as predictors of the prognosis and/or response to therapy.

Keywords: ovarian cancer; borderline ovarian tumor; DNA sequence variant; NGS; Western blot;
TP53; RAS; BRAF; BRCA1/2

1. Introduction

Ovarian carcinoma (OvCa) is a common and complex malignant disease with a gener-
ally poor outcome and an exceptionally high mortality worldwide [1]. There are two main
types of OvCa: high-grade (hgOvCa) and low-grade (lgOvCa) ovarian carcinomas. The
former is the most common type, characterized by extreme genomic instability, chromo-
somal rearrangements, and frequently mutated genes, especially those encoding tumor
suppressor proteins, such as TP53, BRCA1, and BRCA2 [2]. By contrast, lgOvCa is a rare
ovarian tumor characterized by a younger age at diagnosis, relative chemoresistance, and
prolonged survival compared to its high-grade counterpart. Additionally, lgOvCa do not
bear or rarely have mutations in TP53 and BRCA1/2 [3,4], and they (especially those of the
serous subtype) share molecular resemblances with borderline ovarian tumors (BOTS) [5].
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BOTS are regarded as neoplasms that are less aggressive than invasive carcinomas. They
are also a rare entity (about 15% of epithelial ovarian neoplasms) and have relatively low
malignant potential. In contrast to OvCa, BOTS predominantly occur in women at a re-
productive age, are usually diagnosed at a lower FIGO stage, and have better survival
rates. Despite these advantages, BOTS are difficult to diagnose preoperatively by imaging
methods because there are no specific criteria to distinguish them from their malignant
counterparts with high confidence [6]. Additionally, following the complete removal of
the tumor, even 20% of BOTS may recur. Most BOTS recur as borderline tumors; however,
in about 30% of patients with peritoneal implants, OvCa develops [5,7,8]. In contrast
to hgOvCa, in BOTS, mutations in TP53 and BRCA1/2 are rare [9–11], whereas the most
frequently mutated genes are BRAF and KRAS (especially in BOTS of the serous subtype).
Mutations in these genes are sometimes also found in serous lgOvCa, while, in patients
with hgOvCa, their occurrence is rare [12,13]. In addition to KRAS, BRAF, BRCA1/2, and
TP53, a few studies have also investigated the frequency of PIK3CA, EGFR, CTNNB1,
RAD51C, PALB2, CHEK2, and PTEN mutations in BOTS compared to invasive ovarian
carcinomas [14,15]. Nevertheless, data on the polymorphic status of tumor suppressors
and oncogenes in BOTS remain scarce. OvCa are far better genetically characterized than
BOTS. Still, there are discrepancies as to the clinical significance of some molecular markers
that need to be dispelled.

Therefore, in BOTS without the BRAF V600E variant (here referred to as BOT), in
BOTS harboring this genetic variant (BOT.V600E), and in lgOvCa and hgOvCa, we aimed
to characterize the polymorphic status of 76 genes using two next-generation sequencing
(NGS) gene panels. The first one comprised oncogenes and tumor suppressor genes
involved in the development of hereditary ovarian cancer (41 genes) plus CRNDE, IRX5,
and CEBPA. The second panel contained hot spots in genes frequently mutated in sporadic
human cancers (37 genes), most of which were missing in the first gene panel. Except
for the thorough examination of gene polymorphisms and their association with various
clinicopathological parameters with the use of uni- and multivariable regression models,
our workflow involved the confirmation of selected gene variants by Sanger sequencing,
and also the verification of whether there is a correlation between the presence of the given
polymorphism and the expression alterations of the corresponding protein. Hence, this
work may contribute to a better understanding of the ovarian tumor molecular landscape
and lay grounds for the discovery of new biomarkers.

2. Results
2.1. Distribution of Genetic Polymorphisms in Different Tumor Groups

After the NGS and bioinformatic analyses, we obtained a list of genetic variants
with a high or moderate impact on the corresponding protein’s structure and function.
Genetic alterations with these impacts were either analyzed in combination or separately
to determine whether the variants with distinct impacts exhibit concordant or discordant
effects on the ovarian tumor outcome. Additionally, two questions need to be clarified.
Firstly, in the 44-gene panel, one extra oncogene, the investigation of which was unintended,
KCNMB3 [16], was enriched. This was probably because its locus partially overlaps that
of the PIK3CA gene, which was originally included in the panel and encoded by the
opposite DNA strand. Similarly, in the hot-spot panel, one extra gene, FBXW7-AS1, was
enriched, being an antisense transcript of the FBXW7 gene [17], present in the hot-spot
panel. Secondly, polymorphisms in the CRNDE gene (enriched in the 44-gene panel) were
earlier described in another paper by our team [18], and therefore they will not be addressed
in this article.

When using the 44-gene panel in the entire group of ovarian tumors, we discovered
85 unique, previously undescribed variants (71 new SNPs and 14 new non-SNPs). The list of
all the detected variants is presented in a supplementary file named Supplement-variants.xlsx.
The cumulative frequency of all the detected genetic variants (SNPs and non-SNPs combined)
in different groups of tumors is presented in Figure 1A,B (variants with a high or moderate
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(A) or only a high (B) impact) and Figure S1A (variants with a moderate impact only). In
Figures 1C–F and S1C,E, relevant box plots, depicting the overall frequency of SNP and non-
SNP variants separately in different ovarian tumor groups, are shown. These box plots are
additionally supplemented with detailed statistical tests. Furthermore, the mean counts of
either SNP or non-SNP alterations per gene per tumor group are also presented in Figure
S2A–F. When considering all the variants together (Figure 1A), the most frequently altered
genes (the fraction of altered samples in at least one group >0.5) were BRCA1, BRCA2, FANCA,
SEM1, and TP53. However, if only high-impact variants are considered (Figure 1B), the highest
frequencies of genetic alterations (>0.3) were present in the BRCA1 and TP53 genes, and in the
hgOvCa group only. By contrast, the number of SNPs with a high/moderate (Figure 1C) or
only a moderate (Figure S1C) impact on a protein structure/function was significantly higher
in the BOT without the BRAF V600E mutation compared to all the remaining tumor groups.
Moreover, the same analysis revealed that the BOT.V600E tumors were characterized by a
significantly lower number of SNPs than hgOvCa. Noteworthy, in hgOvCa, the number of
high-impact genetic variants (either SNPs or non-SNPs) was significantly elevated compared
to all the other tumor groups, except for SNPs with a high impact in the lgOvCa vs. hgOvCa
comparison (Figure 1D–F). Remarkably, the numbers of non-SNPs with only a moderate impact
on a protein structure/function did not significantly differentiate any ovarian tumor groups
(Figure S1E), conceivably due to the low frequency of these variants (six such changes were
found in only three genes, ATRX, CHEK1, and PTEN (Figure S2D), exclusively in nine hgOvCa
tumors (see Supplement-variants.xlsx)).

For the hot-spot panel, we discovered 82 unique, not previously described genetic variants
(75 new SNPs and 7 new non-SNPs). Their list can be found in Supplement-variants.xlsx.
The cumulative frequency of all the detected variants (SNPs and non-SNPs combined) in
all the genes in every group of tumors is presented in Figure 2A,B (variants with a high or
moderate (A) or only a high (B) impact) and Figure S1B (variants with a moderate impact
only). In Figures 2C–F and S1D,F, relevant box plots, depicting the overall frequency of
SNP and non-SNP variants separately in different ovarian tumor groups, are shown. These
box plots are additionally supplemented with detailed statistical tests. Furthermore, mean
counts of either SNP or non-SNP alterations per gene per tumor group are also presented in
Figure S2G–L. When considering high and moderate variants together, and with SNPs and
non-SNPs combined (Figure 2A), the most frequently altered genes (the fraction of altered
samples in at least one group > 0.5) were PTCH1 (altered in all tumor groups) and TP53 (altered
mainly in hgOvCa). Interestingly, genetic variants in the BRCA1 gene were less frequently
identified in the hot-spot panel than in the 44-gene panel. Nevertheless, if only the high-
impact variants are considered, the mutational profiles of BRCA1 and TP53, detected with
both panels, were similar, revealing the high frequency of genetic alterations within these
genes in OvCa, especially in hgOvCa (Figures 1B and 2B). Notably, in the hot-spot panel,
we also detected two variants in the TP53 gene in one lgOvCa sample (chr17:g.7674921C>A,
p.Glu204Ter and chr17:g.7676218C>A, p.Glu51Ter). Neither of these SNPs were found in the
44-gene panel, probably due to their low frequencies, equaling 11% and 14%, respectively. It
needs to be mentioned here that, in our bioinformatic workflow, all sequence variants less
frequent than 10% were filtered out to eliminate alterations resulting from DNA polymerase
errors and those too rare to both elicit an evident clinical effect and be successfully validated by
Sanger sequencing.

When only SNPs are taken into account, the results for the hot-spot panel importantly
differ from those obtained for the 44-gene panel with respect to the frequency of non-high-
impact SNPs in the BOT group. In the hot-spot panel, the number of such SNPs in BOT was
significantly lower than in both OvCa groups (Figures 2C and S1D). By contrast, in the 44-gene
panel, non-high-impact SNPs in BOT were much more abundant than in all the remaining
tumor groups (Figures 1C and S1C). Yet, this divergence disappeared when either high-impact
SNPs or all non-SNPs were considered (Figures 1D–F and 2D–F), revealing the increased
frequency of genetic alterations in hgOvCa compared to BOTS in both panels.
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Figure 1. SNP and non-SNP variants—44-gene panel. (A,B) The cumulative frequency of all 
variants per gene in each tumor group ((A)—variants with a high or moderate impact, (B)—only 
the variants with a high impact). (C–F) Box plots demonstrating differences in the numbers of 
genetic variants between the analyzed groups of tumors for SNPs ((C) a high or moderate impact, 
(D) only a high impact) and non-SNPs ((E) a high or moderate impact, (F) only a high impact). 
Each box plot is additionally supplemented with the Kruskal–Wallis rank sum test (showing 
whether there is any statistically significant difference between the analyzed sets of variants) and 
the Wilcoxon rank sum test with continuity correction (the post hoc test applied to determine 
which tumor groups differed from each other). NS: not significant. Group sizes: BOT: n = 53; 
BOT.V600E: n = 23; lgOvCa: n = 10; hgOvCa: n = 139. 

Figure 1. SNP and non-SNP variants—44-gene panel. (A,B) The cumulative frequency of all variants
per gene in each tumor group ((A)—variants with a high or moderate impact, (B)—only the variants
with a high impact). (C–F) Box plots demonstrating differences in the numbers of genetic variants
between the analyzed groups of tumors for SNPs ((C) a high or moderate impact, (D) only a high
impact) and non-SNPs ((E) a high or moderate impact, (F) only a high impact). Each box plot is
additionally supplemented with the Kruskal–Wallis rank sum test (showing whether there is any
statistically significant difference between the analyzed sets of variants) and the Wilcoxon rank sum
test with continuity correction (the post hoc test applied to determine which tumor groups differed
from each other). NS: not significant. Group sizes: BOT: n = 53; BOT.V600E: n = 23; lgOvCa: n = 10;
hgOvCa: n = 139.
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Figure 2. SNP and non-SNP variants—hot-spot gene panel. (A,B) Cumulative frequency of all
variants (SNPs and non-SNPs combined) per gene in each tumor group ((A)—variants with a high
or moderate impact, (B)—only the variants with a high impact). (C–F) Box plots demonstrating
differences in the numbers of genetic variants between the analyzed groups of tumors for SNPs
((C) a high or moderate impact, (D) only a high impact) and non-SNPs ((E) a high or moderate impact,
(F) only a high impact). Each box plot is additionally supplemented with the Kruskal–Wallis rank
sum test (showing whether there is any statistically significant difference between the analyzed sets
of variants) and the Wilcoxon rank sum test with continuity correction (the post hoc test applied to
determine which tumor groups differed from each other). NS: not significant. Group sizes: BOT:
n = 53; BOT.V600E: n = 23; lgOvCa: n = 10; hgOvCa: n = 139.
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All SNP and non-SNP variants per gene per sample were summed and binarized
(at least one variant present vs. no alteration). The subsequent statistical analysis of this
dataset, shown in Table 1, revealed that TP53 was the most differentiating gene between
less aggressive tumors (BOT, BOT.V600E, and lgOvCa) and hgOvCa (in the latter, it was
more frequently mutated), regardless of the gene panel and the variant impact. The only
exception to this rule was found for high-impact alterations in the lgOvCa vs. hgOvCa
comparison in the hot-spot panel, where no statistical significance was observed.

Table 1. Genetic variants with a high or moderate impact significantly differentiating ovarian tumor
groups, identified with two gene panels.

44-GENE PANEL

Impact HIGH or MODERATE

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 5.67 × 10−31

(↑hgOvCa)
1.23 × 10−18

(↑hgOvCa)
1.8 × 10−9

(↑hgOvCa)
FANCB 9.71 × 10−3 (↑BOT)

SEM1 2.51 × 10−2

(↑BOT) 1.01 × 10−2 (↑BOT)

FANCA 2.61 × 10−2 (↑BOT)

FANCD2 4.97 × 10−2 (↑hgOvCa) 1.52 × 10−2

(↑hgOvCa)
BRCA2 1.47 × 10−2 (↑BOT)
CHEK2 1.04 × 10−2 (↑BOT)
MUTYH 1.44 × 10−2 (↑BOT)
RAD50 2.83 × 10−2 (↑BOT)

Impact MODERATE

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 3.48 × 10−14

(↑hgOvCa)
6.97 × 10−9

(↑hgOvCa)
1.64 × 10−4

(↑hgOvCa)
BRCA1 2.76 × 10−2 (↑BOT)
FANCB 9.71 × 10−3 (↑BOT)

SEM1 2.51 × 10−2

(↑BOT) 1.01 × 10−2 (↑BOT)

MUTYH 3.8 × 10−2 (↑BOT)
BRCA2 3.83 × 10−3 (↑BOT)
CHEK2 5.94 × 10−3 (↑BOT)
FANCA 2.61 × 10−2 (↑BOT)

FANCD2 4.97 × 10−2 (↑hgOvCa) 1.52 × 10−2

(↑hgOvCa)
RAD50 2.83 × 10−2 (↑BOT)
PALB2 4.31 × 10−2 (↑BOT)

ATM 3.62 × 10−2

(↑lgOvCa)

Impact HIGH

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 1.25 × 10−8 (↑hgOvCa) 1.47 × 10−4

(↑hgOvCa)
3.08 × 10−2

(↑hgOvCa)
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Table 1. Cont.

BRCA1 1.25 × 10−7 (↑hgOvCa) 6.01 × 10−4

(↑hgOvCa)
3.4 × 10−2

(↑hgOvCa)

HOT-SPOT PANEL

Impact HIGH or MODERATE

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 1.01 × 10−29

(↑hgOvCa)
7.62 × 10−18

(↑hgOvCa)
2.35 × 10−7

(↑hgOvCa)

BRAF 1.52 × 10−16

(↑BOT.V600E)
1.08 × 10−8

(↑BOT.V600E)
1.08 × 10−23

(↑BOT.V600E)

NRAS 1.1 × 10−2

(↑lgOvCa)
2.2 × 10−2

(↑lgOvCa)
2.22 × 10−4

(↑lgOvCa)
BRCA1 1.08 × 10−4 (↑hgOvCa)
FBXW7 3.67 × 10−2 (↑hgOvCa)

KRAS 6.44 × 10−5

(↑BOT) 2.58 × 10−10 (↑BOT) 5.13 × 10−3

(↑lgOvCa)
2.77 × 10−3

(↑lgOvCa)

Impact MODERATE

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 2.27 × 10−15

(↑hgOvCa)
1.66 × 10−9

(↑hgOvCa)
8.26 × 10−5

(↑hgOvCa)

BRAF 1.52 × 10−16

(↑BOT.V600E)
1.08 × 10−8

(↑BOT.V600E)
1.08 × 10−24

(↑BOT.V600E)

NRAS 1.1 × 10−2

(↑lgOvCa)
2.2 × 10−2

(↑lgOvCa)
2.22 × 10−4

(↑lgOvCa)

KRAS 6.44 × 10−5

(↑BOT) 1.41 × 10−11 (↑BOT) 5.13 × 10−3

(↑lgOvCa)
1.11 × 10−3

(↑lgOvCa)

Impact HIGH

Group Comparison and p-Value

Gene BOT vs.
BOT.V600E

BOT vs.
lgOvCa BOT vs. hgOvCa BOT.V600E vs.

lgOvCa
BOT.V600E vs.

hgOvCa
lgOvCa vs.

hgOvCa

TP53 5.84 × 10−9 (↑hgOvCa) 1.35 × 10−4

(↑hgOvCa)
BRCA1 3.98 × 10−3 (↑hgOvCa)

p-values of the applicable (chi-squared or Fisher’s exact) test are included, followed by an arrow and the name
of the group in which a given gene was more frequently altered (both written in brackets). In case of a lack of
statistical significance, the corresponding cell is empty.

Two other genes worth mentioning here are BRCA1 and BRCA2, since, in this study,
their mutational profiles seemed to depend not only on the gene panel used but also on the
impact that the genetic alterations had on the structure and function of the proteins encoded
by these genes. In the 44-gene panel, both aforementioned genes turned out to be more
frequently altered in BOT than in hgOvCa if moderate-impact variants were considered.
This regularity also persisted if high-impact alterations in the BRCA2 gene were included.
By contrast, only high-impact BRCA1 variants occurred much more frequently in hgOvCa
than in all the other ovarian tumor groups (Table 1). In the hot-spot panel, the BRCA2 gene
was not included, while the number of polymorphisms in BRCA1 was significantly higher
in hgOvCa than in BOT, irrespective of whether only high-impact or all genetic variants
were taken into account.
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In this study, KRAS was the gene in which high- or moderate-impact variants most
strongly differentiated BOT from all the other tumor groups, except lgOvCa. In
two other genes, involved in ubiquitination, FANCB and SEM1, moderate-impact variants
were identified significantly more frequently in BOT than in OvCa (SEM1) or hgOvCa
(FANCB). Of note, the variants in these two genes did not differentiate BOT from BOT.V600E.
Moreover, from among 76 different genes investigated in the two panels in the present
study, BRAF was the only one that was more frequently mutated in the BOT.V600E tumors
compared to all the other groups.

Genetic changes in the KRAS gene occurred frequently not only in BOT but also in
lgOvCa compared to BOT.V600E and hgOvCa. Apart from KRAS, variants in two other
genes, ATM and NRAS, predominated in lgOvCa. ATM was more frequently altered in
lgOvCa than in the BOT.V600E group, yet this regularity was confined to the moderate-
impact variants only. As for NRAS, moderate-impact alterations in this gene prevailed in
lgOvCa in comparison with the three remaining tumor groups.

For the confirmation of polymorphisms in the selected genes, we used gradient PCR
combined with Sanger sequencing. With this technique, we managed to successfully
verify one previously identified variant in the TP53 gene (chr17:g.7670658_7670659insA,
p.Lys351Ter) [19] and seven new variants (SNPs and non-SNPs) with either a moderate
or high impact on a protein’s structure/function. The verification results and the detailed
description of each analyzed polymorphism are presented in Figure S3.

2.2. Regression Analyses

Using the 44-gene panel, we identified that the genetic variants in PARP1 were of prog-
nostic value and had a significant impact on BOTS patients’ RFS (Table 2 and Figure 3A–D).
Notably, no genetic variants in the genes investigated in this study were identified as good
predictors of the occurrence of microinvasions or implants within the tumor masses in BOTS.
In hgOvCa, the only marker found to be predictive of response to chemotherapy were genetic
variants in BRCA2. Polymorphisms in this gene positively affected both the CR and PS in
patients with tumors without the TP53 protein accumulation, either treated with TP or irre-
spective of the chemotherapeutic regimen used (Table 2 and Figure 3I). The genetic variants
in BRCA2 revealed their favorable prognostic value as well by decreasing the risk of death
in the whole group of patients, in the subgroup treated with TP, and in patients with tumors
without TP53 accumulation. The FANCF gene was discovered here as another marker of a good
prognosis in hgOvCa, as its polymorphisms diminished the risk of death in the TP-treated
patients with tumors lacking the TP53 accumulation. By contrast, in the same group of patients,
the FANCI gene was identified as a negative prognostic factor, elevating the risk of relapse
(Table 2 and Figure 3E–H).

In the hot-spot panel, no genetic variants of prognostic or predictive importance were
found for BOTS. For hgOvCa, we discovered a single adverse prognostic marker, TSC2.
Genetic variants in this gene increased the risk of death in patients treated with the TP
regimen, whose tumors exhibited the accumulation of the TP53 protein (Table 2).

Of note, the regression analysis was not performed for lgOvCa patients due to the
small size of this cohort (n = 10), making multivariable statistical inference impossible.
Nevertheless, it is worth emphasizing here that in the randomization (chi-squared and
Fisher’s exact) tests, described in Section 2.1, we managed to obtain statistically significant
results for comparisons involving lgOvCa, which proved that the statistical power of these
tests was high enough despite the rarity of lgOvCa tumors in our experimental setup.
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Table 2. The results of multivariable Cox and logistic regression analyses for the models with good
discriminating capabilities (assessed based on their AUC values) that matched with corresponding
univariable tests.

44-Gene Panel

BOTS
RFS/relapse in the whole group of patients (full table) HR [95% Cl] p-value

PARP1 6.82 [1.584–29.39] 0.01

hgOvCa

DFS/relapse in the subgroup of patients treated with TP and
without TP53 accumulation in tumors HR [95% Cl] p-value

FANCI 40.02 [3.784–423.133] 0.0022
Residual tumor <2 cm vs. no residual tumor (0 cm) 22.77 [2.061–251.608] 0.01
Residual tumor ≥2 cm vs. no residual tumor (0 cm) 34.1 [2.547–456.619] 0.0077

CR in the subgroup of tumors without TP53 accumulation OR [95% Cl] p-value
BRCA2 7.06 [1.328–37.581] 0.022

OS/death in the whole group of patients (full table) HR [95% Cl] p-value
BRCA2 0.58 [0.399–0.85] 0.005

Residual tumor <2 cm vs. no residual tumor (0 cm) 2.85 [1.654–4.903] 1.6 × 10−4

Residual tumor ≥2 cm vs. no residual tumor (0 cm) 3.75 [2.058–6.821] 1.55 × 10−5

OS/death in patients with tumors without TP53 accumulation HR [95% Cl] p-value
BRCA2 0.42 [0.204–0.865] 0.019

Residual tumor ≥2 cm vs. no residual tumor (0 cm) 4.63 [1.348–15.883] 0.015

OS/death in the subgroup of patients treated with TP HR [95% Cl] p-value
BRCA2 0.53 [0.337–0.84] 0.007

Residual tumor <2 cm vs. no residual tumor (0 cm) 2.97 [1.616–5.471] 4.6 × 10−4

Residual tumor ≥2 cm vs. no residual tumor (0 cm) 3.94 [1.944–7.986] 1.4 × 10−4

CR in the subgroup of patients treated with TP and without TP53
accumulation in tumors OR [95% Cl] p-value

BRCA2 6.73 [1.047–43.239] 0.045

PS in the subgroup of tumors without TP53 accumulation OR [95% Cl] p-value
BRCA2 8.23 [1.509–44.836] 0.015

PS in the subgroup of patients treated with TP and without TP53
accumulation in tumors OR [95% Cl] p-value

BRCA2 8.33 [1.251–55.476] 0.028

OS/death in the subgroup of patients treated with TP and without
TP53 accumulation in tumors HR [95% Cl] p-value

FANCF 0.15 [0.024–0.976] 0.047
Residual tumor <2 cm vs. no residual tumor (0 cm) 3.69 [1.159–11.74] 0.027
Residual tumor ≥2 cm vs. no residual tumor (0 cm) 7.75 [1.84–32.595] 0.005

Hot-Spot Panel

hgOvCa
OS/death in the subgroup of patients treated with TP and with

TP53 accumulation in tumors HR [95% Cl] p-value

TSC2 2.52 [1.191–5.329] 0.016
Residual tumor <2 cm vs. no residual tumor (0 cm) 2.86 [1.312–6.249] 0.008
Residual tumor ≥2 cm vs. no residual tumor (0 cm) 2.61 [1.104–6.146] 0.029

The best models, the discriminating capabilities of which are shown in Figure 3, are underlined. AUC values
for each model are provided in a file named Supplement-matching regression.xlsx. RFS—relapse-free survival;
OS—overall survival; DFS—disease-free survival; TP—taxane/platinum chemotherapy; CR—complete remission;
PS—platinum sensitivity; HR—hazard ratio; OR—odds ratio; CI—confidence interval.
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uni- and multivariable Cox regression models obtained before (A,E) and after (B,F) a bootstrap-
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that was used to draw the time-dependent ROC curves (C,G). Optimal cutoff points for these ROC 

Figure 3. Cox and logistic regression analyses for selected genes. (A–H) Cox regression analysis
results for the PARP1 gene (RFS) in the whole BOTS group (A–D) and for the FANCI gene (DFS) in
the subgroup of hgOvCa patients treated with the TP regimen and without TP53 accumulation in their
tumors (E–H). (I) Logistic regression analysis results for the BRCA2 gene (CR) in the subgroup of hgOvCa
patients without TP53 accumulation in their tumors. (A,B,E,F) AUC plots for uni- and multivariable Cox
regression models obtained before (A,E) and after (B,F) a bootstrap-based cross-validation of the original
dataset. The red dashed line indicates the same time point that was used to draw the time-dependent
ROC curves (C,G). Optimal cutoff points for these ROC curves were calculated for the multivariable
models based on the Youden index. Discrimination sensitivity and specificity values for cutoff points,
determined for ROC curves in (C,G), are also provided. (D,H) Kaplan–Meier survival curves obtained
for the patients divided into two categories (risk higher (high) or lower (low) than for the ROC curves’
(C,G) estimated cutoff point, based on the risk of relapse, calculated using the multivariable models.
The Kaplan–Meier curves are supplemented with the results of the log-rank test as well. (I) ROC curves
for uni- and multivariable logistic regression models. An optimal cutoff point for these ROC curves
was calculated for the multivariable model based on the Youden index. Discrimination sensitivity and
specificity values for this cutoff point are also provided. RFS—recurrence-free survival; DFS—disease-free
survival; RT—residual tumor size; CR—complete remission; TP—taxane/platinum chemotherapy.
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2.3. Assessment of Relationship between Selected Gene Polymorphisms and Expression of
Corresponding Proteins

To evaluate, on the protein level, the effects of the genetic alterations found in this
study, we analyzed the expression of several proteins encoded by genes with SNP and
non-SNP variants. The Western blot (WB) results are presented in Figures 4 and 5. We
observed a lower or no signal on a membrane for non-SNP frameshift polymorphisms de-
tected in the following: NBN (chr8:g.89971217_89971221del, p.Lys219AsnfsTer16; Figure 4A);
CHEK2 (chr22:g.28695869del, p.Thr367MetfsTer15; Figure 4C); and TP53 (chr17:g.7674900dup,
p.Thr211AsnfsTer5; chr17:g.7670686del, p.Arg342GlufsTer3; chr17:g.7674241del,
p.Cys242AlafsTer5; chr17:g.7676078del, p.Pro98LeufsTer25; chr17:g.7676041_7676042insTTTC,
p.Arg110GlufsTer40; Figure 4E). Additionally, we analyzed some samples with TP53 missense
mutations (with a moderate impact) (chr17:g.7675085C>T, p.Cys176Tyr; chr17:g.7673824C>G,
p.Gly266Arg; chr17:g.7676040C>G, p.Arg110Pro; chr17:g.7673776G>A, p.Arg282Trp), for which
we observed TP53 accumulation and a strong signal on a membrane (Figure 4E). Interestingly,
for CHEK1 with a STOP-gain variant (chr11:g.125625996G>A, p.Trp79Ter; Figure 4G), a higher
percentage of altered reads resulted in increased CHEK1 expression.

Moreover, we found out that the expression of FANCI and its protein partner, FANCD2,
was mutually correlated and likely dependent on the presence of genetic variants in the
BRCA1/2 genes. Tumor cases with the FANCI chr15:g.89285210C>T (p.Leu605Phe) variant
did not show any specific pattern of FANCI expression (Figure 5A). However, the same
samples had a similar pattern of FANCD2 expression (Figure 5B), regardless of whether
they harbored variants in FANCD2 (Figure 5G). Yet, the occurrence of FANCD2 expression
seemed to depend on the presence of BRCA1/2 genetic alterations (Figure 5G). In the absence
of sequence variants in these two genes, no signal for altered FANCI, and concomitantly for
FANCD2, was observed on membranes (compare Figure 5G and Figure 5A,B). Additionally,
we tested whether the most frequent variant in FANCD2 (chr3:g.10073349G>T; p.Gly901Val)
affected the FANCD2 expression, which revealed no relationship (Figure 5E,H).
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chr11:g.125625996G>A (p.Trp79Ter) in all three tumors. Altered reads: 303—18%; 160—69%; B68—
49%. (B) Actin as a loading control, detected with a rabbit polyclonal anti-actin Ab, and (D,F,H) 
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Figure 4. Selected genetic variants and their impact on the expression of corresponding proteins.
(A) NBN chr8:g.89971217_89971221del (p.Lys219AsnfsTer16): 20% of reads with this sequence alter-
ation (altered reads) in the B79 BOT sample. (C) CHEK2 chr22:g.28695869del (p.Thr367MetfsTer15):
72% of altered reads in the 410 hgOvCa sample. (E) TP53 missense variants: 206: chr17:g.7675085C>T
(p.Cys176Tyr), 437: chr17:g.7673824C>G (p.Gly266Arg), 485: chr17:g.7676040C>G (p.Arg110Pro),
253: chr17:g.7673776G>A (p.Arg282Trp), 278: chr17:g.7673776G>A (p.Arg282Trp); TP53 non-SNPs
with a HIGH impact: 162: chr17:g.7674900dup (p.Thr211AsnfsTer5), 289: chr17:g.7670686del
(p.Arg342GlufsTer3), 328: chr17:g.7674241del (p.Cys242AlafsTer5), 394: chr17:g.7676078del
(p.Pro98LeufsTer25), 366: chr17:g.7676041_7676042insTTTC (p.Arg110GlufsTer40). Altered reads:
206—64%; 437—72%; 485—71%; 253—84%; 278—63%; 162—67%; 289—52%; 328—43%; 394—40%;
366–50%. (G) CHEK1 chr11:g.125625996G>A (p.Trp79Ter) in all three tumors. Altered reads:
303—18%; 160—69%; B68—49%. (B) Actin as a loading control, detected with a rabbit polyclonal anti-
actin Ab, and (D,F,H) vinculin as a loading control, detected with a rabbit polyclonal anti-vinculin Ab.
M—protein marker; vinc.—vinculin; ctrl—normal ovary; hg—hgOvCa; lg—lgOvCa; Ab—antibody.
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altered reads: B77—51%, 558—92%, 549—85%, 366—45%, 305—86%, 278—33%, 253—32%. No 
relationship between the percentage of altered reads and the protein level was observed. (B) 
FANCD2 expression for the same cases as in (A). (E) Expression of FANCD2 in the cases with the 
most frequently occurring FANCD2 variant: chr3:g.10073349G>T (p.Gly901Val). No relationship 
between the presence of this variant, the percentage of altered reads (H), and the protein level was 
observed. (G) A table showing the occurrence of FANCD2 and BRCA1/2 variants in samples with 
the FANCI chr15:g.89285210C>T variant. (C,D,F) Loading controls. A rabbit polyclonal anti-actin or 
anti-vinculin primary antibody was used to detect actin (C,F) and vinculin (D), respectively. Ctrl—
normal ovary; hg—hgOvCa; lg—lgOvCa. 

  

Figure 5. Frequent genetic variants in the FANCI and FANCD2 genes and their impact on the
expression of corresponding proteins. (A) the FANCI chr15:g.89285210C>T (p.Leu605Phe) variant;
altered reads: B77—51%, 558—92%, 549—85%, 366—45%, 305—86%, 278—33%, 253—32%. No
relationship between the percentage of altered reads and the protein level was observed. (B) FANCD2
expression for the same cases as in (A). (E) Expression of FANCD2 in the cases with the most
frequently occurring FANCD2 variant: chr3:g.10073349G>T (p.Gly901Val). No relationship between
the presence of this variant, the percentage of altered reads (H), and the protein level was observed.
(G) A table showing the occurrence of FANCD2 and BRCA1/2 variants in samples with the FANCI
chr15:g.89285210C>T variant. (C,D,F) Loading controls. A rabbit polyclonal anti-actin or anti-vinculin
primary antibody was used to detect actin (C,F) and vinculin (D), respectively. Ctrl—normal ovary;
hg—hgOvCa; lg—lgOvCa.
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3. Discussion

The aim of this study was the analysis of genetic variants in crucial tumor suppressors
and oncogenes in ovarian tumors of different aggressiveness. We not only evaluated the
polymorphic status of these genes in large, thoroughly characterized cohorts of OvCa and
BOTS, but we also found predictive and/or prognostic markers for both tumor groups and
analyzed the functional role of selected polymorphisms regarding their influence on the
expression of the corresponding proteins.

Unexpectedly, our NGS results, obtained for the 44-gene panel, showed that the number
of SNPs with a high or moderate or only moderate impact on the structure and/or function of
the corresponding proteins was higher in BOT compared to BOT.V600E, lgOvCa, or hgOvCa.
Conversely, when analyzing only hot spots in selected genes, the frequency of SNP variants
with these impacts was significantly lower in BOT than in both OvCa groups. This apparent
discrepancy may be explained by the fact that the two panels investigated in this study con-
tained different sets of genes. As proven in the present study, the list of genes from the 44-gene
panel more frequently mutated in BOT compared to the other tumor groups (FANCB, SEM1,
FANCA, BRCA2, CHEK2, MUTYH, RAD50) was much longer than analogically altered genes
in the hot-spot panel (KRAS only). Additionally, the hot-spot panel was designed to investigate
well-known genetic alterations. By contrast, in the 44-gene panel, an approximately 10 times
bigger region of the genome was covered, enabling the detection of rare genetic variants,
usually omitted in, e.g., diagnostic approaches. Nevertheless, when only polymorphisms with
a high impact on a protein function and/or structure were considered, the number of genetic
variants identified in both panels was the highest in hgOvCa, thus supporting the general
knowledge about ovarian carcinomas [20,21].

The mutational status of TP53 can be considered one of the best markers differentiating
hgOvCa (frequent mutations in TP53) from BOTS (no or very rare mutations) [11,22,23] and
lgOvCa (relatively rare mutations) [24]. In line with these reports, TP53 was one of the most
frequently altered genes in the present study, mainly in hgOvCa. By contrast, no variants
in TP53 were found in our lgOvCa cases, besides two poorly covered high-impact SNPs in
one lgOvCa specimen. Interestingly, these SNPs were detected only in the hot-spot panel,
making use of a novel NGS hybridization capture technology (known as Primer Extension
Target Enrichment, KAPA HyperPETE, Roche), offering much better sequencing coverage
uniformity than the older hybridization-based capture approach (KAPA HyperCap, Roche),
utilized in the 44-gene panel [25]. As for BOTS, the only two missense variants in TP53
found in this study were observed in two BOT samples of a mucinous subtype. This
outcome aligns with the current state of the knowledge too, given that Kang et al. reported
TP53 mutations in 19.4% of mucinous BOTS, which was associated with a higher risk of
recurrence [26]. Consistently, one of our two TP53 mutation-bearing BOT patients had
progression to OvCa. Noteworthy, herein, we also managed to confirm our NGS results
for TP53 on the protein level by observing both the lack of TP53 in samples with high-
impact non-SNP variants and TP53 accumulation in tumors harboring TP53 missense
SNPs. These results are in line with our previous immunohistochemical evaluation of TP53
expression [27].

According to the literature, alongside genetic aberrations in TP53, mutations in
BRCA1/2 are also frequent in hgOvCa [24,28] and are rare in BOTS and lgOvCa [3,9,10,24].
Our results obtained with the 44-gene panel do not seem fully consistent with the literature,
as we found variants in BRCA1/2 genes in many non-high-grade ovarian tumors. How-
ever, it needs to be emphasized that, except for one SNP in a single BOT, these were only
moderate-impact variants. These variants accounted for the significantly higher number
of genetic alterations found in BRCA1/BRCA2 in BOT compared to hgOvCa. Yet, when
only high-impact variants were considered, BRCA1 (but not BRCA2) was, as expected,
more frequently altered in hgOvCa in comparison with all the remaining tumor groups. By
contrast, in the hot-spot panel, which concentrated on well-established variants only and
omitted most of the poorly investigated genetic alterations, no BRCA1 polymorphisms with
a high/moderate impact were found in BOT or lgOvCa, and only a single moderate-impact
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variant was present in one BOT.V600E sample. As a consequence, when only commonly
analyzed hot spots in the BRCA1 gene were taken into account, our statistical workflow
corroborated the generally acknowledged predominance of sequence variants in this gene
in hgOvCa compared to BOT. Still, according to a recent NGS study, carried out on big
cohorts (containing 1333 OvCa and 152 BOTS patients), the prevalences of BRCA1/2 mu-
tations are similar in hgOvCa and BOTS (30.9% and 28.9%, respectively) [29]. Thus, this
paper seems to corroborate our finding, made with the 44-gene panel, that lots of genetic
alterations in BRCA1 are detectable in BOTS if high-throughput sequencing techniques
(not limited to known hot spots only) are applied. As for BRCA2, similarly to BRCA1, the
moderate-impact variants of this gene prevailed in BOT compared to hgOvCa. Conversely,
we revealed no differences in the frequencies of high-impact BRCA2 polymorphisms be-
tween the investigated groups of ovarian tumors. Nevertheless, BRCA2 emerged in this
study as a promising, favorable predictive and prognostic marker in hgOvCa. The pres-
ence of sequence variants in BRCA2 improved the patient OS, CR, and PS, especially in
tumors without TP53 accumulation. Although this outcome may seem odd, given the
tumor suppressor capabilities of this gene, a similar phenomenon was earlier observed in
small-cell lung cancer [30], where the authors of the cited research reported a link between
the occurrence of BRCA2 mutations and the higher sensitivity of tumors to chemotherapy.
In line with these findings, data obtained in vitro also provided strong evidence for the
better response of BRCA-deficient tumors to platinum drugs, which was further confirmed
by ex vivo studies, where BRCA mutation carriers exhibited better survival and longer
disease-free intervals upon treatment with platinum drugs [31]. As BRCA1/BRCA2 pro-
teins are responsible for the repair of double-strand DNA breaks (DSBs), the presence of
pathogenic variants in BRCA2 leads to the impaired activity of its protein product and thus
increases the risk of a DSB in a tumor cell. If such a cell expresses functional TP53 (no TP53
accumulation is observed), apoptosis is induced [32], thus ameliorating the outcome of
platinum-based treatment, as shown herein.

As for genetic alterations characteristic of less aggressive ovarian tumors, the genes
with the highest number of polymorphisms in BOTS and lgOvCa compared to hgOvCa were
KRAS, BRAF, and NRAS, which is in line with the scientific literature [13,33–36]. Given that
BOTS with the BRAF V600E variant occurred in much younger patients than those lacking
this mutation [18], here, both these groups of tumors were analyzed separately. Interestingly,
KRAS was more frequently mutated in BOT and lgOvCa than in either BOT.V600E or
hgOvCa, while the frequencies of KRAS variants in lgOvCa and BOT were comparable.
This confirms the molecular resemblance between these two tumor groups. Simultaneously,
such an outcome demonstrates that in BOTS without the BRAF V600E variant (being the
most frequent polymorphism in this gene, found in this study in about 72% of BRAF-
deficient tumors), KRAS-activating mutations are present. The KRAS-dependent cancer-
promoting mechanism hinges mainly on mutations in the Gly12(G12)-coding region of
the gene [37,38], which, in our research, predominated in BOT and lgOvCa alike. By
contrast, none of the KRAS polymorphisms, which we found in a few hgOvCa tumors,
affected Gly12. Furthermore, it is worth mentioning that all three of our BOT cases with
BRAF variants other than V600E (i.e., K601E, G466R, and G466V) simultaneously harbored
KRAS G12 variants. This suggests that out of all the BRAF polymorphisms, only BRAF
V600E exerts a sufficiently strong cancer-promoting effect to act independently of KRAS
mutations [39]. As for NRAS variants, their prevalence differentiated lgOvCa from all the
other tumor groups investigated in our study. This outcome supports the finding of others
that mutations in NRAS are found in serous lgOvCa but not, or rarely, in serous BOTS [40].
Similarly to activating mutations in KRAS, their counterparts in NRAS also speed up tumor
progression. Moreover, such variants are found in recurrent serous lgOvCa too [41,42]. In
this context, it is worth mentioning that one of our serous BOT samples with microinvasions
harbored the NRAS-activating variant (p.Gln61Arg) [43], which occurred most frequently
in our lgOvCa group as well. The presence of such a mutation in a BOT sample not only
constitutes further confirmation of the molecular similarity between BOT and lgOvCa [5,44]
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but also implies that this BOT tumor might have transformed and recurred as lgOvCa
if it had not been completely excised. According to the literature, in advanced ovarian
carcinomas, NRAS mutations are rare [45]. Consistently, we did not identify such genetic
alterations in our hgOvCa series. Of note, mutations in the KRAS, NRAS, and BRAF genes
have also been reported in other human malignancies, e.g., colorectal and endometrial
cancers [46–49].

Genes encoding proteins involved in ubiquitination were also more frequently altered
in BOT and differentiated these tumors from OvCa (but not from BOT.V600E). One of
these genes, SEM1, which codes for a 26S proteasome subunit [17], was very often altered
in all the tumor groups. Although the most frequent variant, found in all the tumor
groups, p.Gln59Pro is widespread in the human population (maximum allele frequency
(AFmax) of 0.88); still, the overall number of SEM1 variants was significantly higher in
BOT than in either lgOvCa or hgOvCa. Nowadays, no scientific reports on the role of this
polymorphism in tumors are available. For the second gene, FANCB, which encodes a DNA
repair-involved protein required for FANCD2 ubiquitination [17], literature data concerning
OvCa are scarce, while its function in BOTS has not been studied so far. FANCB missense
mutations were shown to cause the instability of the catalytic module and Fanconi Anemia
(FA) core complex dysfunction. By contrast, SNPs in the FANCB 3′UTR did not affect
the expression or function of the protein [50]. Given that all the FANCB polymorphisms
found in our research were located in the coding sequence of the gene, their occurrence
may likely impair the FANCB function, as proven in the study cited above. Interestingly,
according to the current state of the knowledge, the FANCB role in cancer seems discrepant.
On the one hand, no mutations in this gene in hereditary breast/ovarian cancers were
found [51] and no associations between FANCB and the development of BRCA1/2-negative
familial cancers were demonstrated [50]. On the other hand, Matta et al. [50] unraveled
the relationship between the expression of FANCB and breast cancer in older patients with
decreased DNA repair capacities. In this context, our results appear to shed new light on
the clinical importance of FANCB, showing that this gene may play more important roles in
BOTS than in OvCa.

Our regression analysis revealed genetic variants in PARP1 as a marker of a poor
prognosis in BOTS. This gene encodes a protein activated by DNA damage, regulating the
function of many tumor suppressors, including TP53 [52]. In the literature, the data on
the PARP1 role in BOTS are limited; however, its meaning in OvCa has been profoundly
investigated [53,54]. Consequently, PARP inhibitors have been approved for the mainte-
nance treatment of recurrent platinum-sensitive BRCA1/2-deficient OvCa. Yet, newer data
demonstrated therapeutic benefits in tumors beyond those with BRCA1/2 mutations [55].
Remarkably, the most frequent PAPR1 polymorphism in all the groups of tumors analyzed
herein, p.Val762Ala, was different from that causing resistance to olaparib, one of the PARP
inhibitors [56]. Despite its predominance in the human population (AFmax around 45%),
the p.Val762Ala variant was previously shown to be associated with several types of cancer,
including gallbladder cancer [57,58]. The same polymorphism also increased the risk of
breast cancer among the Saudi and Asian populations, simultaneously decreasing this
risk among Caucasians [59]. Interestingly, though other scientists reported that PARP1
expression in serous OvCa is higher than in BOTS [60], in our hgOvCa series, this gene was
neither more frequently altered nor identified as a potential biomarker.

Polymorphisms in two other genes encoding proteins involved in the FA pathway,
FANCF and FANCI, were identified herein as promising outcome predictors in hgOvCa.
Noteworthy, variants in FANCI exhibited significantly better discriminative capabilities
than those in FANCF, as assessed based on the AUC values. The FANCI protein forms
a heterodimer with FANCD2, which is subsequently monoubiquitinated by the FA core
complex. Such a heterodimer localizes to the damaged chromatin and promotes interstrand
crosslink repair [50]. In our analyses, the presence of variants in the FANCI gene increased
the risk of recurrence in the TP-treated patients with tumors lacking the TP53 accumulation.
When the literature data are considered, the role of FANCI seems ambiguous, as this gene



Int. J. Mol. Sci. 2024, 25, 10876 17 of 26

has been reported to play both oncogenic and tumor suppressor roles [61,62]. Moreover,
FANCI was recently proposed as a new OvCa-predisposing gene in carriers of the FANCI
p.Leu605Phe variant [63], the frequency of which turned out to be significantly higher in
OvCa-prone families with normal BRCA1/2 genes [64]. In vitro studies revealed that the
Leu605Phe isoform of FANCI was expressed at a reduced level and conferred sensitivity
on HeLa and OvCa cells to cisplatin but not to a PARP inhibitor [64]. Consistently, our WB
analyses revealed that tumors with the FANCI p.Leu605Phe variant and normal BRCA1/2
genes did not express mutated FANCI, in contrast to BRCA1/2-deficient tumors, where
FANCI expression was detected. Additionally, the same WB analysis unraveled the correla-
tion between the expression of the FANCI and FANCD2 proteins. All these results clearly
suggest that the role of FANCI depends on the molecular background in the cell controlled
by crucial tumor suppressors, such as BRCA1/2 and TP53.

Our last result worth discussing deals with CHEK1 for the nonsense variant in which
(chr11:g.125625996G>A, p.Trp79Ter) we observed the unexpectedly high expression of
the CHEK1 protein. Interestingly, both molecular phenomena seemed to be positively
correlated (the higher the percentage of the altered allele, the stronger the signal for CHEK1
on a membrane). The SNP in question is located in the first exon/5’UTR region of CHEK1. If
the longest isoform of CHEK1 (XP_011540862.1) is considered, the discussed polymorphism
leads to the formation of a premature stop codon. In such a case, the utilization of an
alternative start codon located downstream from the newly formed stop codon may not
only restore the CHEK1 expression as a shorter isoform but concomitantly affect its levels
in the cell. Consistently, according to the literature, short CHEK1 isoforms may occur due
to alternative splicing or protein cleavage [65]. The role of CHEK1 in tumorigenesis is
ambiguous. Initially, CHEK1 was thought to be a tumor suppressor because of the role it
plays in the DNA damage response and cell cycle checkpoint response [66]. However, no
evidence of homozygous loss of function CHEK1 mutants in human cancers was found.
Moreover, the CHEK1 gene was overexpressed in several solid tumors, and its expression
was correlated with the tumor grade and disease recurrence [67]. In step with these findings,
the complete loss of CHEK1 suppresses chemically induced carcinogenesis, whereas tumor
cells with increased levels of CHEK1 may acquire survival advantages due to the ability to
resist chemotherapy-induced DNA damage. As a result, reduced survival rates of patients
with high CHEK1 expression were reported in bladder, brain, lung, ovary, and breast
cancers [67]. Although our results do not elucidate whether CHEK1 acts more like an
oncogene or suppressor in ovarian tumors, further investigation of its variants appears
interesting in the context of potential targeted therapies with Prexasertib, a selective CHEK1
inhibitor. Its application, either as a single agent or in combination with PARP inhibitors,
stimulated tumor regression and prolonged hgOvCa patient survival [68]. This combination
of inhibitors could be of potential use in BOTS, since PARP1 polymorphisms were identified
herein as a negative prognostic marker in these tumors, while some BOTS also harbored
the above-described CHEK1 p.Trp79Ter variant.

Finally, as with every study, this one also has some limitations that ought to be men-
tioned here. Although we managed to identify numerous genetic variants, due to financial
and time-related constraints, the functional validation was only performed for a small
subset of these polymorphisms. Thus, the clinical significance of many identified variants,
listed in the Supplement-variants.xlsx file, remains unclear and should be addressed in
future research. Furthermore, it needs to be emphasized that in our bioinformatic workflow,
all sequence variants less frequent than 10% were filtered out. This approach was utilized
to reduce the rate of false-positive hits, yet, hypothetically, some rare, clinically important
polymorphisms may have been excluded from the analysis too. The next limitation worth
bringing up results from the fact that we analyzed bulk tumor samples, which are just a
part of the entire tumor microenvironment, the complexity and heterogeneity of which
might not have been fully captured due to the constraints of the experimental setup applied
in this study. Also, in terms of the tumor complexity and heterogeneity, we are aware that
the loading controls in our Western blot experiments sometimes differed between lysates
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from distinct OvCa samples analyzed on the same gel. This inconsistency was not caused
by any laboratory error or imprecision but, rather, is related to the vast biodiversity of
ovarian tumors, especially high-grade OvCa, which results from the genomic and pro-
teomic instability of such malignancies [69]. In the present study, to diminish the risk of
drawing false conclusions, the concentration of all the protein lysates was not only assessed
by Ponceau S red staining but was also precisely measured and normalized with the BCA
method and a standard curve for bovine serum albumin (BSA). In the end, the present
research was performed on a retrospective (not prospective) cohort of patients, collected for
20 years, meticulously followed up, and carefully checked for the compatibility of all the
clinicopathological parameters. This approach, though widely used, could introduce some
hardly definable biases and limit the ability to control for potential confounding factors.

4. Materials and Methods
4.1. Patients and Clinicopathological Parameters

In this study, a retrospective set of 225 non-consecutive ovarian tumor samples
was used, including 76 BOTS (61 of the serous type and 15 of other histological types),
10 lgOvCa (9 of the serous type and 1 of another type), and 139 hgOvCa (113 of the serous
type and 26 of other types). All the samples were collected from an ethnically uniform
cohort of patients of central European origin, hospitalized at the Maria Sklodowska-Curie
National Research Institute of Oncology, Warsaw, Poland, in the years 1995–2015. The
corresponding medical records were critically reviewed by at least two physicians. Out of
76 BOTS, 21 were collected as snap-frozen samples, whereas the remaining 55 specimens
were available in the form of formalin-fixed, paraffin-embedded (FFPE) blocks only. By
contrast, all our OvCa samples were snap-frozen. The detailed clinicopathological character-
istics for the BOTS and OvCa are presented in Supplementary Tables S1 and S2, respectively.
For two lgOvCa, the information on the applied chemotherapy was missing, which was
one of the grouping variables in our study. Therefore, these samples were excluded from
Table S2. As for the evaluation of the clinical endpoints, all surviving patients had at least
a 3-year follow-up. The specimens were carefully selected to meet the following criteria:
an adequate staging procedure (stages were assessed for all cancers and primary BOTS)
according to the recommendations by the International Federation of Gynecologists and
Obstetricians (FIGO) [70], tumor tissue from the first laparotomy available, availability of
clinical data including patient age and follow-up, as well as tumor histological type and
grade and residual tumor size. Noteworthy, all BOT patients were characterized by no
residual disease. All tumors were uniformly histopathologically reviewed and classified
according to the new WHO criteria [5,71]. Additionally, a complete evaluation of the genetic
variants in the TP53 gene (for all tumors) and the TP53 protein status (for cancers only) was
performed by either next-generation sequencing or with the PAb1801 mouse monoclonal
antibody (1:500, Sigma-Genosys, Cambridge, UK), as described previously [27]. Most BOT
patients (n = 60) did not undergo any chemical treatment. The remaining individuals
suffering from BOTS (n = 16) received chemotherapy, administered either pre- or postopera-
tively. All carcinomas were excised from previously untreated patients. A total of 35 OvCa
patients were treated postoperatively with platinum/cyclophosphamide (PC), while 112 of
them underwent the taxane/platinum (TP) treatment after a surgical intervention. In BOTS,
the relapse-free survival time (RFS) and the presence of microinvasions or implants within
the tumor masses were used as dependent variables determining the disease outcome. The
chemotherapy administration status was used as an independent logical variable in the
multivariable statistical analyses. Other covariates taken into account in the multivariable
statistical inference in BOTS were a logical variable determining whether the tumor was
primary, the tumor histological type, and the patient age (continuous variable). In addition,
BOTS were analyzed in the entire cohort of patients, and in subgroups comprising either
BOT.V600E or BOT specimens only, since the presence of the BRAF V600E mutation was
previously found to be significantly correlated with the lower age of patients diagnosed
with BOTS [18]. For cancers, the overall survival (OS) and disease-free survival (DFS) of
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patients were used as dependent prognostic variables, while the platinum sensitivity (PS)
and complete remission (CR) served as dependent factor variables predictive of the tumors’
response to treatment. CR was defined as the disappearance of all clinical and biochemical
symptoms of ovarian cancer assessed after completion of the first-line chemotherapy and
confirmed four weeks later [72]. DFS was assessed only for the patients who achieved
CR. As for the independent variables used in the statistical analyses in cancers, the his-
tological type and clinical stage of the tumors along with the residual tumor size were
taken into account as factor variables in the multivariable statistical models. Noteworthy,
due to the small size of the lgOvCa subgroup, only hgOvCa samples were subjected to
the regression analyses performed in the present study. The hgOvCa were investigated in
either the entire set of samples or in subgroups depending on the chemotherapy regimen
used (PC/TP) and/or the TP53 accumulation status. Notably, two of the above-mentioned
lgOvCa samples excluded from Table S2 were taken into account in the entire bioinformatic
workflow presented herein, except for the Cox and logistic regression analyses, which
required detailed clinicopathological information.

4.2. DNA Isolation and Quality Assessment

Genomic DNA (gDNA) from snap-frozen sections was isolated using the QIAmp
DNA Mini Kit (Qiagen; Hilden, Germany), whereas gDNA from FFPE blocks was extracted
on the MagCore Nucleic Acid Extractor machine using the MagCore Genomic DNA FFPE
One-Step Kit (RBC Biosciences, Xinbei City, Taiwan). gDNA concentrations were measured
on the Qubit 4 Fluorometer (Thermo Fisher Scientific (Thermo), Waltham, MA, USA)
using the Qubit dsDNA HS Assay Kit (Thermo). Before the construction of the NGS
libraries, the gDNA quality was assessed using our in-house-developed method based on
the comparison of the real-time quantitative PCR (qPCR) efficiency for two amplicons of
different lengths, described in the paper by Woroniecka et al. [73].

4.3. Construction of Total gDNA Libraries; 44-Gene Panel Enrichment and Verification;
NGS Sequencing

For the libraries’ construction, 120–500 ng of gDNA was used. Libraries were created
using the KAPA Hyperplus Kit (Roche, Basel, Switzerland) according to the protocol pro-
vided by the producer. The verification of the libraries’ size was made on 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Total gDNA libraries were then enriched
in exonic sequences of the following 44 genes: ATM, ATR, ATRX, BAP1, BARD1, BCL2L1,
BLM, BRCA1, BRCA2, BRIP1, CCNE1, CEBPA, CHEK1, CHEK2, CRNDE, EMSY, FANCA,
FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM, IRX5, MDM2,
MRE11, MUTYH, NBN, PALB2, PARP1, PIK3CA, PRKDC, PTEN, RAD50, RAD51B, RAD51C,
RAD51D, RAD54L, RPA1, SEM1, and TP53, using the SeqCap EZ Hybridization&Wash
Kit with biotinylated hybridization probes (Roche). Out of these genes, 41 were involved
in hereditary ovarian carcinoma development (as stated in the description of the Ion Am-
pliSeq™ Comprehensive Ovarian Cancer Research Panel, Thermo). The remaining three
genes, CRNDE, IRX5, and CEBPA, were added by our team to further extend the function-
ality of this panel. The whole enriched region covered ca 360,000 bp in the genome. The
verification of the DNA enrichment was performed by qPCR with four pairs of primers
designed by Roche. The list of primers and the results of the enrichment evaluation for
each primer pair are presented in Figure S4A–D,F. The NGS libraries were sequenced
on the NovaSeq 6000 Platform (Illumina, San Diego, CA, USA) in the paired-end mode
(2 × 100 bp for DNA obtained from frozen material or 2 × 75 bp for DNA isolated from
FFPE blocks). The resultant BAM files were deposited in the European Nucleotide Archive
(ENA) database (data acc. no. PRJEB75542).

4.4. Hot-Spot Panel Enrichment and Verification; NGS Sequencing

For the hot-spot analysis, total gDNA libraries, also employed for the 44-gene panel,
were used. The enrichment in 37 genes frequently mutated in sporadic human cancers
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(AKT1, ALK, APC, ATM, BRAF, BRCA1, CDKN2A, CTNNB1, EGFR, ERBB2, ESR1, FBXW7,
FGFR1, FGFR2, FGFR3, GNA11, GNAQ, GNAS, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, NF1,
NRAS, NTRK3, PDGFRA, PIK3CA, POLE, PTCH1, PTEN, RET, STK11, TP53, TSC1, TSC2)
was performed using the KAPA HyperPETE Hot Spot Panel (Roche). The whole enriched
region covered approximately 36,000 bp in the human genome. The verification of the
gDNA enrichment was performed using qPCR with one pair of our in-house-designed
primers for TP53 exon 4. For the enrichment verification results and PCR primer sequences,
refer to Figure S4E,F. The NGS libraries were sequenced on the iSeq100 platform (Illumina)
in the paired-end mode (2 × 150 bp for DNA obtained from frozen material or 2 × 100 bp
for DNA isolated from FFPE blocks). The resultant BAM files were deposited in the ENA
database (data acc. no. PRJEB75531).

4.5. Bioinformatic Analyses

The quality of our NGS data (FASTQ files) was assessed with the FASTQC app
(v. 0.12.1) and then optimized with Trimmomatic (v. 0.39). Mapping to the reference
human genome (hg38) was performed using the HISAT2 aligner (v. 2.2.1). Afterward,
the mapping quality was evaluated with the Samtools (v. 1.6), Genome Analysis Toolkit
(v. v4.5.0.0), and Qualimap (v. 2.3) apps. Next, our in-house-developed software, Se-
qDepth_checker (v. 1.0, downloadable from https://github.com/lukszafron, LMS_gh,
accessed on 29 May 2024), was utilized to evaluate the mean sequencing read coverage
depths for each region enriched in every gene. If the mean coverage depth for a given
region was lower than 5, this region was excluded from further analyses to diminish the
risk of considering unevenly enriched DNA regions as non-mutated in samples with poor
enrichment. The obtained BAM files were subsequently analyzed with bcftools software
(v. 1.18) to create VCF files with the AD tag. Next, the variants were subjected to two-step
filtering. First, variants less frequent than 10% were filtered out based on the AD tag, using
the VAF checker app (version: 1.0), a program available for download at LMS_gh. Then,
the vcf-annotate app from the VCFtools package (version: 0.1.16) was employed to filter
out variants that did not meet the following criteria: all filters with default values applied,
except for MinAB = 2 (a minimum number of alternate bases of 2), Qual = 20 (minimum
sequence quality of 20), MinMQ = 20 (minimum mapping quality of 20), and MinDP = 5
(minimum sequence coverage depth of 5). Subsequently, the obtained VCF files were
divided with bcftools into two subsets, SNPs and non-SNPs, containing SNP variants vs. all
other sequence alterations, i.e., indels (insertions, deletions), mnps (multi-nucleotide poly-
morphisms), bnd (breakpoints), and others, respectively. Next, the variant identification
and effect prediction analysis was carried out using the Ensembl Variant Effect Predictor
(VEP) app (v. 109) and the merged Ensembl and RefSeq databases [74]. The obtained
tab-delimited CSV files (VEP output tables) were further analyzed consecutively with two
R programs developed by LMS, vep.r (v. 2.2) and vep.comparison.r (v. 2.2), both available
for download at LMS_gh. Ensembl VEP divides sequence variants into four categories:
high, moderate, low, and modifier, based on their expected impact on the transcript and
protein sequences. For details, refer to the Ensembl web page [75]. The two aforementioned
R apps were utilized first to filter out all variants characterized by low or modifier impacts
and then to exclude all variants except those that either had a known adverse clinical sig-
nificance (determined with the CLIN_SIG tag) or negatively affected the protein structure
and function (as assessed by either the SIFT or PolyPhen algorithms). The new, previously
unidentified sequence variants (with an empty “Existing_variation” field in the VEP output
table), variants for which all three “CLIN_SIG”, “SIFT” and “PolyPhen” fields were empty,
or those with a maximum allele frequency (MAX_AF) lower than 0.01, were also included
in the final report generated by the vep.r app. The analyses were carried out independently
for SNP and non-SNP variants. Subsequently, these results were combined with the bina-
rization of sequence alterations for every gene (sequence variants with a high or moderate
impact present (1) vs. absent (0)). Afterward, to identify genes with significantly different
frequencies of sequence alterations between the investigated groups of ovarian tumors,
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statistical inference with the chi-squared test or the Fisher’s exact test (depending on the
sizes of the analyzed subgroups) was carried out, followed by the data visualization. This
final step of the analysis was performed with the vep.comparison.r script. A list of all
polymorphic variants for each sample is presented in Supplement-variants.xlsx.

All genes containing variants identified in our bioinformatic analyses were subse-
quently subjected to detailed statistical inference with the use of univariable and multivari-
able Cox proportional hazards models (package: survival, v. 3.5.7) to assess the value of
these genes as potential novel prognostic biomarkers. All Cox models were also checked
with respect to the proportionality of hazards for each variable used. The prediction of the
treatment response was carried out by generating univariable and multivariable logistic
regression models (packages: stats., v. 4.0.2, and rms, v. 6.0.1). The dependent, independent,
and grouping variables (different for BOTS and hgOvCa) are described above in the section
entitled Patients and Clinicopathological Parameters. In order to verify the discriminat-
ing capabilities of the created Cox and logistic regression models, we performed their
cross-validation in new datasets, generated from the original data by bootstrapping (with
replacement) and a subsequent comparison of the areas under ROC curves (AUCs) between
the original and bootstrapped datasets, using the riskRegression package (v. 2023.12.21) [76].
The R script written to automate the above-mentioned statistical inference and subsequent
visualization of the results (regression.analyses.r, v. 1.2) is downloadable from LMS_gh.

In order to identify the best potential biomarkers, we performed a matching of our
regression analyses’ results. In this step, each univariable model was compared with its
multivariable counterpart, and the models were considered matched when the analyzed
genes and groups of tumors were the same, when both p-values were <0.05, when both
HR/OR values were either higher or lower than 1, and, concomitantly, when the discrimi-
nating capabilities of both models were good enough (AUC values >0.65). Notably, in this
paper, only the models that matched are presented.

4.6. Verification of Selected Polymorphisms

In this study, the following selected genetic variants (with coordinates consistent with the
hg38 human genome assembly) in 8 genes were verified by gradient PCR and Sanger sequenc-
ing: MUTYH, chr1:45332673del; BRCA2, chr17:43093093_43093096del; FANCE,
chr6:g.35456000T>G; FANCI, chr15:g.89295051C>T; FANCM, chr14:g.45187852C>G; PRKDC,
chr8:g.47779009C>T; RAD51D, chr17:g.35106436del; and TP53, chr17:g.7670658_7670659insA,
COSV99037094. The PCR reactions employed either the AmpliTaq Gold™ DNA Polymerase
(Thermo) or the Phusion Green High-Fidelity DNA Polymerase (Thermo)) and in-house-
designed sets of primers (Table S3). PCR products were analyzed by agarose gel electrophoresis
using the Simply Safe reagent (EurX, Gdansk, Poland) for DNA visualization. Gels were
documented on the UVP ChemStudio Imaging System (Analityk Jena, Jena, Germany). After-
ward, specific PCR products of expected lengths were cleaned with ExoSAP-IT (Thermo) and
sequenced using the appropriate primer and the BigDye Terminator v 3.1 Cycle Sequencing
Kit (Thermo). Sanger sequencing products were then cleaned with the ExTerminator Kit (A&A
Biotechnology, Gdansk, Poland) and analyzed on the 3500 Genetic Analyzer (Thermo).

4.7. Protein Concentration Measurement

Total protein lysates were obtained by incubating tumor samples with the RIPA buffer
supplemented with the Halt Protease Inhibitor Cocktail (Thermo). Next, the concentration
of each lysate was evaluated with the BCA assay (Sigma Aldrich, Saint Louis, MO, USA),
using BSA (Thermo) in amounts ranging from 0 to 25 µg per well as a standard curve. The
absorbance at 540 nm was measured on the Victor 3 spectrophotometer (model: 1420-012,
Perkin Elmer, Waltham, MA, USA). The negative control wells, containing only the BCA
solution, were used as blank samples in this experiment.
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4.8. Western Blot (WB) Analyses

WB analyses were performed for selected variants in genes coding for the TP53, NBN,
CHEK1, CHEK2, FANCI, and FANCD2 proteins. Each WB experiment was preceded
by WB tests confirming the specificity of the used primary antibodies (Abs). Except
for lysates prepared from tumors, we also used a lysate prepared from a normal ovary
as a control. For each experiment, 15–20 µg of a protein lysate was added per well.
An electrophoretic separation of proteins was performed in 10–12% polyacrylamide gels
(40% stock solution with the acrylamide to bis-acrylamide ratio equaling 37.5:1, BioRad,
Hercules, CA, USA). To estimate the molecular weights of proteins, we used either the
Broad Range Prestained Protein Marker (Proteintech, Rosemont, IL, USA) or the Precision
Plus Protein Standard (BioRad). Depending on the protein being analyzed, either 0.2 µm
nitrocellulose (Amersham™ Protran®, Cytiva, Marlborough, MA, USA) or 0.2 µm PVDF
(Thermo) membranes were used. The transfer buffer was composed of 25 mM Tris (Sigma
Aldrich), 192 mM Glycine (Sigma Aldrich), and 5–10% (v/v) methanol (Sigma Aldrich).
Protein transfer was performed overnight (4 ◦C, 27 mA) or for 1–1.25 h (4 ◦C, 300 mA). For
the membrane blocking, a 5% solution of skimmed milk (SM Gostyn, Gostyn, Poland) in
the 1xTBST buffer (Tris-buffered saline (0.05 M Tris and 0.15 M NaCl) with 0.1% Tween-20
detergent (Sigma)) was used. As loading controls, Ponceau S red (Sigma Aldrich) staining,
rabbit anti-β-actin Ab (1:100) (Thermo), and rabbit anti-vinculin Ab (1:500) (Thermo) were
applied. Most primary Abs against selected proteins were purchased from Proteintech
and were polyclonal antibodies developed in rabbits. By contrast, the primary mouse anti-
TP53 antibody (Calbiochem, San Diego, CA, USA) was monoclonal. Chemiluminescence
signals were detected on the UVP ChemStudio Imaging System (Analytik Jena, Jena,
Germany) using either the goat anti-rabbit HRP-conjugated secondary Ab (Thermo) or the
goat anti-mouse HRP-conjugated secondary Ab (Proteintech) and the SignalBright Max
Chemiluminescent Substrate (Proteintech). A detailed description of the WB conditions for
each protein is presented in Table S4.

5. Conclusions

In this study, we examined the role of polymorphic variants in the most important
oncogenes and suppressors in BOTS, lgOvCa, and hgOvCa. Our work contributes to the
elucidation of the molecular landscape of various ovarian neoplasms, demonstrating com-
pletely divergent mutation profiles and molecular pathways engaged in their development.
Certain mutations seem to play an important role in BOTS without the BRAF V600E variant
(KRAS) and in lgOvCa (KRAS and NRAS), but not in hgOvCa, once again proving that
advanced OvCa are molecularly distinct from less aggressive ovarian neoplasms. Addi-
tionally, based on multivariable regression analyses utilizing detailed clinicopathological
data, potential biomarkers in BOTS (PARP1) and hgOvCa (FANCI, BRCA2, TSC2, FANCF)
were identified. Noteworthy, for some of the analyzed genes, such as FANCI, FANCD2,
and FANCI, FANCF, TSC2, the status of BRCA1/2 and TP53, respectively, turned out to
be crucial. Although thorough mechanistic insight is necessary to fully investigate the
molecular background of each genetic variant reported herein and to understand its clini-
cal importance, still, our work sheds new light on the similarities and differences in the
polymorphic patterns between ovarian tumors of diverse aggressiveness. Thus, it forms a
valuable foundation for future research.
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Simple Summary: In tumorigenesis, aberrant DNA methylation may be an earlier and stronger
modifier of gene expression than mutations. Herein, 128 serous ovarian tumors were analyzed,
including borderline ovarian tumors (BOTS) with (BOT.V600E) and without (BOT) the BRAF V600E
mutation, low-grade (lg), and high-grade (hg) ovarian cancers (OvCa). The methylome of the samples
was profiled with Infinium MethylationEPIC microarrays. Global, genome-wide hypomethylation
positively correlated with the increasing aggressiveness of tumors, being the strongest in hgOvCa.
Remarkably, the ten most significant differentially methylated regions (DMRs) in the genome, dis-
criminating BOT from lgOvCa, encompassed the MHC region on chromosome 6. We also identified
hundreds of DMRs potentially useful as predictive biomarkers in BOTS and hgOvCa. DMRs with
the best discriminative capabilities overlapped the following genes: BAIAP3, IL34, WNT10A, NEU1,
SLC44A4, and HMOX1, TCN2, PES1, RP1-56J10.8, ABR, NCAM1, RP11-629G13.1, AC006372.4, NPTXR
in BOTS and hgOvCa, respectively. By identifying potential biomarkers, this study might improve
ovarian tumor outcome.

Abstract: Background: Changes in DNA methylation patterns are a pivotal mechanism of carcino-
genesis. In some tumors, aberrant methylation precedes genetic changes, while gene expression
may be more frequently modified due to methylation alterations than by mutations. Methods:
Herein, 128 serous ovarian tumors were analyzed, including borderline ovarian tumors (BOTS) with
(BOT.V600E) and without (BOT) the BRAF V600E mutation, low-grade (lg), and high-grade (hg)
ovarian cancers (OvCa). The methylome of the samples was profiled with Infinium MethylationEPIC
microarrays. Results: The biggest number of differentially methylated (DM) CpGs and regions
(DMRs) was found between lgOvCa and hgOvCa. By contrast, the BOT.V600E tumors had the lowest
number of DM CpGs and DMRs compared to all other groups and, in relation to BOT, their genome
was strongly downmethylated. Remarkably, the ten most significant DMRs, discriminating BOT from
lgOvCa, encompassed the MHC region on chromosome 6. We also identified hundreds of DMRs,
being of potential use as predictive biomarkers in BOTS and hgOvCa. DMRs with the best discrimi-
native capabilities overlapped the following genes: BAIAP3, IL34, WNT10A, NEU1, SLC44A4, and
HMOX1, TCN2, PES1, RP1-56J10.8, ABR, NCAM1, RP11-629G13.1, AC006372.4, NPTXR in BOTS and
hgOvCa, respectively. Conclusions: The global genome-wide hypomethylation positively correlates
with the increasing aggressiveness of ovarian tumors. We also assume that the immune system may
play a pivotal role in the transition from BOTS to lgOvCa. Given that the BOT.V600E tumors had the
lowest number of DM CpGs and DMRs compared to all other groups, when methylome is considered,
such tumors might be placed in-between BOT and OvCa.
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1. Introduction

Changes in DNA methylation patterns are a pivotal mechanism of carcinogenesis. In
tumors, aberrant DNA methylation may be an earlier event than mutations. In some
cancers, gene expression may even be more frequently modified due to methylation al-
terations than by mutations [1,2]. Borderline ovarian tumors (BOTS) exhibit intermediate
aggressiveness between benign tumors and invasive carcinomas. They are a rare entity
with relatively low malignant potential. In contrast to the majority of ovarian carcinomas,
BOTS usually occur in women in reproductive age, are usually diagnosed at the low FIGO
stage, and are characterized by better survival rates. Imaging methods (ultrasound, MRI)
are useful to distinguish BOTS from OvCa preoperatively. However, the final diagnosis
must be based on histopathological examination. Surgery with a complete resection is
the cornerstone of BOTS treatment. Still, in young women considering procreation, a
fertility-sparing surgical intervention is preferentially applied. Remarkably, chemotherapy
is not recommended in BOTS [3,4]. Following the complete removal of the tumor, even
20% of BOTS may recur, usually as borderline tumors; however, in some patients, BOTS
may recur as ovarian carcinomas [5–8]. Moreover, serous BOTS are closely related to serous
low-grade carcinomas (lgOvCa), as they harbor similar genetic alterations [7,9]. By contrast,
high-grade serous ovarian carcinomas (hgOvCa) are considered distinct ovarian neoplasms,
molecularly unrelated to lgOvCa and BOTS [10]. Considering methylome changes, it was
reported that serous hgOvCa form a separate cluster compared to BOTS and lgOvCa [11].
However, so far, methylation patterns of BOTS and lgOvCa of the serous type have been
evaluated with low-resolution microarrays only. In addition, scientific data comparing
ovarian tumors of diverse aggressiveness are still very scarce [11–14]. To fill out this gap,
we aimed to obtain very detailed methylation profiles in such tumors. For this purpose, we
performed the methylation analysis in non-consecutive primary serous ovarian tumors,
obtained from previously untreated patients, using high throughput microarrays. This
analysis was then validated by methylation-specific PCR combined with Sanger sequencing.
Moreover, to investigate the biological role of the nominated biomarkers and assess their
clinical usefulness, we carried out detailed DNA strand-specific and fold change-dependent
ontology analyses, followed by the comprehensive statistical inference of all differentially
methylated regions in the genome with multivariable regression models. Considering that
the TP53 accumulation status has been previously shown to affect the clinical meaning of
other molecular markers in our previous research on ovarian cancers [15,16], we decided
to take this parameter into account in the present study. As to BOTS, we investigated
these tumors in the context of the mutational status of the BRAF oncogene, which was
demonstrated to be crucial for borderline ovarian tumors but not ovarian cancers [17,18].
Simultaneously, the presence of the BRAF V600E mutation turned out to be a negative
clinical factor, associated with the earlier onset of BOTS in our previous research [19].

2. Materials and Methods
2.1. Patients and Clinicopathological Parameters

In the present study, a set of 128 non-consecutive, primary serous ovarian tumors of
different aggressiveness was investigated. All the patients with these tumors were hospi-
talized at the Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw,
Poland in the years 1995–2015. Medical records of the patients were critically reviewed
by at least two physicians. Our set of tumors included 25 BOTS (11 with and 14 without
the BRAF V600E mutation, Table S1) and 103 OvCa (7 lgOvCa and 96 hgOvCa, Table S2).
The specimens were selected to meet the following criteria: adequate staging procedure
according to the recommendations by the International Federation of Gynecologists and
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Obstetricians (FIGO), tumor tissue from the first laparotomy available, availability of
clinical data including patient age and follow-up, as well as tumor histological type and
grade, clinical stage, and residual tumor size. All tumors were uniformly histopatholog-
ically reviewed and re-classified according to new WHO criteria [7,20]. Additionally, a
complete evaluation of genetic variants in the TP53 gene (for all tumors) and the TP53
protein status (for cancers only) was performed, as previously described, by either next-
generation sequencing (NGS) [21] or with the mouse monoclonal antibody [15]. All the
BOTS patients did not undergo any chemical treatment, whereas all OvCa were excised
from previously untreated patients. Twenty-two ovarian cancer patients were treated
postoperatively with platinum/cyclophosphamide (PC), while eighty-one underwent the
taxane/platinum (TP) treatment after a surgical intervention. As to the evaluation of clinical
endpoints, all surviving patients had at least a 3-year follow-up. In BOTS, RFS and the
presence of microinvasions or non-invasive implants within the tumor masses were used
as dependent variables determining the disease prognosis. As the covariates, taken into
account in the multivariable statistical inference in BOTS, clinical stage according to FIGO
(categorical variable), and patient age (continuous variable) were used. In addition, BOTS
were analyzed in the entire cohort of patients, and subgroups comprising specimens with
(BOT.V600E) or without (BOT) the BRAF V600E mutation, since the presence of this genetic
alteration was previously found to be significantly correlated with the lower age of patients
diagnosed with BOTS [19]. In cancers, OS and DFS were used as dependent prognostic
variables, while PS and CR served as dependent factor variables predictive of response to
treatment. CR was defined as the disappearance of all clinical and biochemical symptoms
of ovarian cancer assessed after completion of the first-line chemotherapy and confirmed
four weeks later. DFS was assessed only for the patients who achieved a CR. As to the
independent variables used in multivariable statistical analyses in cancers, a FIGO stage of
the tumors along with a residual tumor size were taken into account as factor covariates.
Noteworthily, due to the small size of the lgOvCa subgroup, only hgOvCa samples were
subjected to regression analyses performed in the present study. In such analyses, hgOvCa
were investigated either as the entire group of specimens or in subgroups depending on
the chemotherapy regimen used (PC or TP) and/or the TP53 accumulation status. The
clinicopathological data were missing for one BOT.V600E specimen. Therefore, the relevant
cohort described in Table S1 is smaller.

2.2. DNA Isolation and Quality Assessment

Our preliminary analyses revealed that the sample source (snap-frozen or FFPE) signif-
icantly affected hierarchical clustering of the data when overall differences in methylation
patterns between the specimens were displayed on a heatmap (Figure S1). To eliminate this
impact and reduce a potential bias in the methylation analysis results, each group of sam-
ples contained DNA isolated from both snap-frozen and FFPE sections (BOT: 4 snap-frozen,
10 FFPE, BOT.V600E: 4 snap-frozen, 7 FFPE, lgOvCa: 5 snap-frozen, 2 FFPE, and hgOvCa:
92 snap-frozen, 4 FFPE). Genomic DNA (gDNA) from snap-frozen sections was isolated
using the QIAmp DNA Mini Kit (Qiagen; Hilden, Germany), whereas gDNA from FFPE
blocks was extracted in the MagCore Nucleic Acid Extractor, using the MagCore Genomic
DNA FFPE One-Step Kit (RBC Biosciences, Xinbei City, Taiwan). Before its hybridization to
microarrays, gDNA quality was assessed using our in-house developed method based on
the comparison of Real-Time quantitative PCR efficiency for two amplicons of different
lengths, described in a paper by Woroniecka et al. [22].

2.3. DNA Bisulfite Conversion

High-quality gDNA isolated from tumors was subjected to a bisulfite conversion (EZ
DNA Methylation Kit, Zymo Research; Irvine, CA, USA). Before and after the conversion,
gDNA concentrations were measured on the Qubit 4 Fluorometer (Thermo Fisher Scientific;
Waltham, MA, USA) using either the Qubit dsDNA HS Assay Kit or Qubit ssDNA Assay
Kit, respectively (both kits were manufactured by Thermo Fisher Scientific). The bisulfite
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conversion was carried out for 500–1000 ng of gDNA from snap-frozen tissue sections and
200–1000 ng of gDNA from FFPE blocks.

2.4. Microarray Profiling

Bisulfite-converted gDNA samples were subjected to microarray-based DNA methyla-
tion profiling with Infinium MethylationEPIC v1.0 BeadChip microarrays (Illumina; San Diego,
CA, USA). For identifiers and genomic locations of over 850,000 methylation sites detectable
with these microarrays, refer to Supplementary File: Illumina_Infinium_methyl_EPIC_array_
hg19_ext_attributes.xlsx. Hybridization was carried out according to the protocol provided by
Illumina. The fluorescence signal was scanned with the iScan array scanner (Illumina).

2.5. Methylation-Specific PCR and Sanger Sequencing

Methylation changes at selected genomic sites were confirmed for three CpGs in three
genes by methylation-specific PCR (employing the AmpliTaq Gold™ DNA Polymerase,
Thermo Fisher Scientific) followed by Sanger sequencing, using the in-house designed
primers: DHDDS/HMGN2 (cg26108329, chr1:g.26797585 and cg05304531, chr1:g.26797576, For-
ward: TAATATGATTGGGGTATAGTAGAGGTGATT, Reverse: CACTAAATTAATCCCATC-
TAATTTCTTAAA) and SKI (cg13488570, chr1:g.2222253, Forward: TTGTTGAGATATTT-
TATTGGTTTGAGGGT, Reverse: AACTAATTCACCAAAAATCAAACTCAATTA). Each of
the genomic positions mentioned above refers to the GRCh37 assembly of the human
genome. PCR products were then analyzed by agarose gel electrophoresis using the Simply
Safe reagent (EurX, Gdansk, Poland) for DNA visualization. Gels were documented on
the UVP ChemStudio Imaging System (Analytik Jena, Jena, Germany). Afterward, the
PCR products were cleaned with ExoSAP-IT (Thermo Fisher Scientific) and subjected to
Sanger sequencing using the appropriate primer and the BigDye Terminator v. 3.1 Cycle
Sequencing Kit (Thermo Fisher Scientific). Sanger sequencing products were then cleaned
with the ExTerminator Kit (A&A Biotechnology, Gdansk, Poland) and analyzed on the
3500 Genetic Analyzer (Thermo Fisher Scientific). The conditions of methylation-specific
PCR and Sanger sequencing reactions for each gene are presented in Table S3.

2.6. Bioinformatic and Statistical Analyses

All computations shown herein were run in the R environment (v. 4.3.2), using the
GRCh37 (hg19) version of the human genome assembly as a reference. To ensure the
highest standards of the methylation analysis, samples with poor hybridization quality
were filtered out at the earliest step of the bioinformatic workflow. The hybridization
quality was assessed by calculating the signal detection probability with the detectionP
function (minfi package, v. 1.46.0). At least 85% of hybridization signals for each sample
had to have p-values < 0.05 for the sample to remain in the analyses. All our samples
passed that filter (Figure S2) and were submitted to the Gene Expression Omnibus (GEO)
database (data acc. no. GSE267068). Apart from the samples, hybridization probes also
underwent a three-step filtering, involving the detection probability cut-off (p-value < 0.05),
filters of SNPs at CpG sites, and of cross-reactive probes. Due to the relatively poor quality
of DNA isolated from FFPE blocks, we had to eliminate about 24% of the probes at the first
filtering step to guarantee reliability of the final results. Therefore, the ultimate number of
probes that passed all the filtering steps was 599,503 (69.24%). Subsequent bioinformatic
analyses were performed in line with the workflow published by Maksimovic et al. [23]
that was further improved by our team, as described in our previous work [19].

All differentially methylated regions (DMRs) identified in our bioinformatic analyses
were subsequently subjected to detailed statistical inference with the use of univariable and
multivariable Cox proportional hazards models (package: survival, v. 3.5-7) to assess the
value of these DMRs as potential novel prognostic biomarkers. All Cox models were also
checked with respect to proportionality of hazards for each variable used. The prediction
of treatment response was carried out by generating univariable and multivariable logistic
regression models (packages: stats. v. 4.0.2, and rms, v. 6.0-1). The dependent, independent,
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and grouping variables used (different for BOTS and hgOvCa) were described above in
the section entitled “Patients and clinicopathological parameters”. In order to verify the
discriminative capabilities of the created Cox and logistic regression models, we performed
their cross-validation in new data sets, obtained from the original data by bootstrapping
(with replacement), using the riskRegression package for R (v. 2023.12.21) [24]. Subse-
quently, areas under ROC curves (AUCs) between the original and bootstrapped data sets
were compared.

To perform detailed gene ontology analyses, each CpG was assigned to the gene only
when the CpG site was located on the same DNA strand as the coding sequence of the
gene of interest. Furthermore, methylation alterations were analyzed either collectively
or with regard to the direction of each change (i.e., hypermethylated genes were assessed
independently of hypomethylated ones). The obtained lists of genes were then subjected to
ontology analyses with the ShinyGO web app (v. 0.80), with the FDR cutoff set to 0.1 and
the maximum pathway size of 2000.

3. Results
3.1. The Analysis of the MDM2/TP53/CDKN1A (p21) Axis

The MDM2/TP53/CDKN1A axis is a main pathway involved in the determination
of genomic stability and the regulation of cell cycle progression [25]. Considering that
methylation changes may precede mutations [2], and that the methylome of BOTS and
lgOvCa has been poorly investigated so far, we intended to check whether methylation
patterns in TP53 and other genes in the aforementioned axis are different in BOTS and
lgOvCa compared to hgOvCa. We focused mainly on methylation changes in promoters
and first exons, as such alterations were proven to make the strongest impact on gene
expression [26,27]. In Table S4, the complete list of CpGs in the TP53, MDM2, and CDKN1A
gene regions analyzed herein is presented, whereas all significant methylation differences
(average beta values) between the analyzed tumors groups for various regions of these
genes are shown in Figures 1 and S3.

Overall, in the TP53 tumor suppressor gene, we observed a tendency towards hy-
permethylation in carcinomas in comparison with BOTS (Figure 1A–C). Despite the fact
that we found no TP53 missense mutations and TP53 protein accumulation in our low-
grade tumors [21], we observed hypermethylation in almost every region of this gene.
The methylation of all TP53 exons and also the first TP53 exon only was even higher in
lgOvCa than in hgOvCa (Figure 1C and Figure S3A). For MDM2, encoding an oncogenic
protein, we observed an opposite effect. In the proximal promoter region of this gene, we
found significantly lower methylation in hgOvCa compared to BOTS (Figure 1D). As to
CDKN1A, which codes for the p21 tumor suppressor protein, we unexpectedly revealed
lower methylation levels within the proximal promoter and 1st exon alike in carcinomas
compared to BOTS (Figure 1E,F), especially when BOTS without the BRAF V600E variant
were considered. Interestingly, the first exon of the CDKN1A gene was less methylated in
lgOvCa than in hgOvCa.

Of note, no methylation differences in either of the above-mentioned three genes
between BOT and BOT.V600E tumors were identified in the present study.
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Figure 1. Violin plots of methylation changes (average beta values) in the promoter and first-exon
regions of the TP53, MDM2, and CDKN1A genes (the remaining significant results are presented in
Supplementary Figure S3). The values range from 0 to 1 (where 0 means no methylation and 1 denotes
100% methylation of CpGs detected in the region). Each analysis is supplemented with the results
of two non-parametric statistical tests: the Kruskal–Wallis test (to determine overall methylation
differences between the groups) and the Wilcoxon rank sum test to identify differences between
particular groups; NS—non-significant result. Low p-values are displayed in exponential notation
(e–n), in which e (exponent) multiplies the preceding number by 10 to the minus nth power.

3.2. Differences in Methylation Patterns Between Groups

The numbers of differentially methylated CpGs and differentially methylated regions
(DMRs) in all inter-tumor-group comparisons are shown in Table 1. In general, global
genome-wide hypomethylation positively correlated with the increasing aggressiveness
of tumors and was especially evident in the hgOvCa group (the highest ratios of down-
methylated/upmethylated CpGs and DMRs in hgOvCa vs. all the other tumor groups).
Remarkably, the same ratio for the inter-BOTS comparison was also very high, particularly
when DMRs were considered. Moreover, BOT.V600E tumors emerged as the group with the
lowest number of differentially methylated CpGs and DMRs compared to all the remaining
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groups. This suggests that extensive hypomethylation of the genome is what distinguishes
BOT.V600E from BOT and, when methylome is considered, BOT.V600E tumors might be
placed somewhere in-between BOT and OvCa.

Table 1. Numbers of differentially methylated CpGs and DMRs between the groups of tumors.

CpGs

DM CpGs BOT vs. BOT V600E BOT vs. lgOvCa BOT vs. hgOvCa BOT V600E vs. lgOvCa BOT V600E vs. hgOvCa lgOvCa vs. hgOvCa

Upmethylated 16,108 86,834 93,667 5438 12,170 136,293

Downmethylated 4035 88,467 30,227 11,665 7369 32,832

Sum of DM CpGs 20,143 175,301 123,894 17,103 19,539 169,125

NS 579,360 424,202 475,609 582,400 579,964 430,378

Up/Down ratio 3.99 0.98 3.1 0.47 1.65 4.15

DMRs

DMRs BOT vs. BOT V600E BOT vs. lgOvCa BOT vs. hgOvCa BOT V600E vs. lgOvCa BOT V600E vs. hgOvCa lgOvCa vs. hgOvCa

Upmethylated 1837 12,438 11,442 1062 2127 21,555

Downmethylated 25 7646 1979 869 1385 5759

Sum of DMRs 1862 20,084 13,421 1931 3512 27,314

Up/Down ratio 73.48 1.63 5.78 1.22 1.54 3.74

The up/down prefixes refer to the first element in each comparison. DM—differentially methylated; DMR—
differentially methylated region; NS—non-significant.

3.3. CpG Sites with the Most Differentiated Methylation

Based on p-values obtained in the differential methylation analysis of individual CpGs,
we identified the most differentiated CpG sites for all six inter-tumor-group comparisons.
The upset plot demonstrating the numbers of differentially methylated (DM) CpGs in each
inter-tumor-group comparison and the numbers of such CpGs for the specific intersection
of tumor groups is shown in Figure 2A. In Figure 2B–G, the distribution of M-values for
the most DM CpG site in each inter-tumor-group comparison is displayed. Additionally,
Figure 2 is supplemented with Table 2, which shows the 10 most significantly differentiating
CpGs (and the genes they are located in) for each inter-tumor-group comparison.

DM CpGs distinguishing BOT from BOT.V600E the most occurred in genes involved
in cell adhesion (MIP, ODAD3, PTPRF and ITGA7), lipid metabolism (LRP1, CBY1), cell
differentiation (PTPRF, CBY1), apoptosis (SPRYD4, LRP1), and ER (endoplasmic reticulum)-
related processes (PRKCSH, CYB5R4). One CpG site, cg19623237, was located in an inter-
genic region.

The CpG differentiating BOT from lgOvCa the most was located in a pseudogene,
NBPF13P, involved in nervous system development. Some other CpGs/genes differentiat-
ing these tumor groups were also engaged in neuronal processes (ZIC2, GNB1L). However,
the biggest group of CpGs with divergent methylation patterns between BOT and lgO-
vCa lay in genes associated with transcriptional regulation, such as ZNF585, ZNF341,
ZIC2, RECQ25, SAP30BP, and ETV4. CpGs in genes participating in mitochondrial pro-
cesses (RTL10, COX16, SYNJ2BP-CO16) and cell differentiation (ZIC2, ETV4) were also
identified as differentially methylated between BOT and lgOvCa. There was also one
CpG, cg10479053, present on the opposite (minus) strand to the coding sequence of the
PSMD3 gene.

In the BOT vs. hgOvCa comparison, the most differentiating CpG, cg18813601, lay in
an intergenic region on chromosome 10. Other DM CpGs occurred in genes involved in
neuronal processes (NBPF13P, ZIC2, SLC4A10, DLX6, and CSNK1G2) and cell differenti-
ation/development (CTBP1, DLX6, CSNK1G2). Additionally, some CpGs were found in
genes regulating transcription (ZIC2, CTBP1, HNRNPA1L2), Golgi apparatus functioning
(GORASP2, CTBP1), as well as in pseudogenes (NBPF13P, MRPS31P4).

Interestingly, in the BOT.V600E vs. lgOvCa comparison, we observed some different
processes than when BOT were compared to lgOvCa. CpGs with the most divergent
patterns were located in genes involved in cell differentiation and development (FOXA1,
PLEKHO1, TFDP1, ZIC2). In addition, DM CpGs were found in genes related to cell
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proliferation (CAMK2N1, PVT1), apoptosis (FOXA1, PLEKHO1, PVT1), adhesion (PIP5K1C,
PLEKHO1, TTC6), cell cycle (FOXA1, TFDP1), lipid metabolism (CAMK2N1, TFDP1),
neuronal processes (ZIC2, CAMK2N1), and transcription regulation (FOXA1, TFDP1, ZIC2).
One CpG site was present in the gene of unknown function (TMEM104).
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Figure 2. Differentially methylated CpGs. (A): the upset plot demonstrating the number of dif-
ferentially methylated CpGs in each inter-tumor-group comparison (blue bars) and the number of
such CpGs (red bars) for the specific intersection of tumor groups (all sets included in the given
intersection are indicated with black dots, that are connected with a line if the intersection contains
more than one set). (B–G): the distribution of M-values for the most differentiating CpGs for each
inter-tumor-group comparison, followed by genomic locations and gene names with strand iden-
tificators shown in brackets. M-value is the log2 of the ratio between signal intensities for probes
specific to methylated (numerator) and unmethylated (denominator) cytosines in the given CpG site.
The higher the M-value, the higher the methylation level.
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Table 2. CpG sites with the most differentiated methylation in all inter-tumor-group comparisons.

BOT vs. BOT.V600E BOT vs. lgOvCa BOT vs. hgOvCa
cg09060823; chr12:g.(−)56862504

SPRYD4(+)/MIP(−)
cg22671717; chr1:g.(−)146548657

NBPF13P(−)/NA(+)
cg18813601; chr10:g.(+)3330571

NA(+)/NA(−)

cg00598858; chr19:g.(−)11545966
PRKCSH(+)/ODAD3 (CCDC151)(−)

cg06869971; chr15:g.(−)69706519
KIF23(+)/RP11-253M7.1 (KIF23-AS1)(−) cg25977528; chr13:g.(+)100633444 ZIC2(+)

cg24443198; chr6:g.(−)84569302
CYB5R4(+)/NA(−)

cg22011361; chr14:g.(−)70821355
COX16(−)/SYNJ2BP-COX16(−)

cg00614081; chr4:g.(−)1233439
CTBP1(−)

cg10664618; chr12:g.(+)57579466 LRP1(+) cg25977528; chr13:g.(+)100633444 ZIC2(+) cg06903478; chr17:g.(+)76183632
AFMID(+)/TK1(−)

cg15086746; chr1:g.(−)44084965
PTPRF(+)/NA(−)

cg03751813; chr19:g.(−)37701393
ZNF585B(−)

cg02608914; chr2:g.(−)171784720
GORASP2(+)/NA(−)

cg00500457; chr22:g.(−)39055589
CBY1(+)/FAM227A(−)

cg23639257; chr17:g.(−)73663270
RECQL5(−)/SAP30BP(+)

cg22671717; chr1:g.(−)146548657
NBPF13P(−)/NA(+)

cg08427970; chr10:g.(−)99122398
RRP12(−)

cg10479053; chr17:g.(−)38136919
PSMD3(+)/NA(−)

cg11704490; chr2:g.(−)162284894
NA(−)/SLC4A10(+)/AC009487.5(+)

cg02608656; chr12:g.(+)56090830
ITGA7(−)/NA(+)

cg17908846; chr20:g.(+)32320553
ZNF341(+)

cg10659805; chr7:g.(+)96631680
DLX6(+)/DLX6-AS1(−)

cg02901790; chr8:g.(+)144391601
TOP1MT(−)/NA(+)

cg22437020; chr17:g.(−)41623744
ETV4(−)/RP11-392O1.4(+)

cg02215357; chr13:g.(−)53191046
NA(−)/HNRNPA1L2(+)/MRPS31P4(+)

cg19623237; chr17:g.(+)77818582
NA(+)/NA(−)

cg00528793; chr22:g.(−)19842837
GNB1L(−)/RTL10 (C22Orf29)(−)

cg25899337; chr19:g.(−)1970441
CSNK1G2(+)/NA(−)

BOT.V600E vs. lgOvCa BOT.V600E vs. hgOvCa lgOvCa vs. hgOvCa

cg15091337; chr2:g.(+)75185439 POLE4(+) cg06903478; chr17:g.(+)76183632
AFMID(+)/TK1(−)

cg15792713; chr17:g.(+)26674270
POLDIP2(−)/NA(+)

cg13518540; chr17:g.(+)72781248
TMEM104(+) cg27641801; chr4:g.(−)4429265 STX18(−) cg11610925; chr10:g.(−)134978049

KNDC1(+)/NA(−)

cg00376288; chr19:g.(+)3656580
PIP5K1C(−)/NA(+) cg08271229; chr1:g.(+)2222674 SKI(+) cg00454305; chr16:g.(−)1429905

UNKL(−)

cg10168722; chr14:g.(−)38068608
FOXA1(−)/TTC6(+)

cg18813601; chr10:g.(+)3330571
NA(+)/NA(−)

cg18468569; chr8:g.(+)125984720
ZNF572(+)

cg11199810; chr1:g.(−)150123146
PLEKHO1(+)/NA(−)

cg17026391; chr11:g.(+)61159442
TMEM216(+)

cg14636714; chr10:g.(−)135018298
KNDC1(+)/NA(−)

cg18656829; chr13:g.(−)100632250
NA(−)/ZIC2(+)

cg00614081; chr4:g.(−)1233439
CTBP1(−)

cg07570470; chr8:g.(+)142318841
NA(+)/SLC45A4(−)

cg02941008; chr1:g.(+)20810527
CAMK2N1(−)/NA(+)

cg00817355; chr2:g.(−)85073409
TRABD2A(−)

cg19823504; chr19:g.(+)4556982
SEMA6B(−)/NA(+)

cg27641801; chr4:g.(−)4429265 STX18(−) cg15792713; chr17:g.(+)26674270
POLDIP2(−)/NA(+)

cg21633143; chr7:g.(−)154862021
HTR5A(+)/HTR5A-AS1(−)

cg07819108; chr8:g.(+)128921817 PVT1(+) cg05222982; chr13:g.(+)28545214
NA(+)/CDX2(−)

cg05640731; chr10:g.(−)135018226
KNDC1(+)/NA(−)

cg17707487; chr13(+)114261869 TFDP1(+) cg19875936; chr12:g.(−)7858848
NA(−)/NA(+)

cg19307500; chr19:g.(−)1083193 HMHA1
(ARHGAP45)(+)/NA(−)

Names of genes in which the given CpG sites are located including the coding DNA strand (+/−) are emboldened.
Overlapping genes are separated with a slash (/). CpG sites’ identifiers and their chromosomal locations, including
the strand they lie on, are shown above the gene name and are not emboldened.

In the BOT.V600E vs. hgOvCa comparison, except for cg06903478 in AFMID/TK1 and
cg00614081 in CTBP1, we observed distinct DM CpGs/genes from those differentiating
BOT from hgOvCa. Nonetheless, biological processes affected by these epigenetic changes
were similar in both comparisons, since cell development/differentiation (genes: SKI,
CTBP1, TRABD2A, CDX2), transcription (genes: CDX2, CTBP1), neuronal processes (genes:
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TRABD2A, SKI), and Golgi-dependent processes (genes: CTBP1, STX18) were identified
as terms enriched in genes with CpGs most significantly differentiating BOT.V600E from
hgOvCa. Two other DM CpGs, cg18813601 and cg19875936, were located in intergenic regions.

The biggest group of DM CpGs between lgOvCa and hgOvCa lay in genes associ-
ated with neuronal processes (KNDC1, SEMA6B, HTR5A). Many such CpGs were present
on the opposite strand as the coding sequence of known genes (cg15792713, cg11610925,
cg14636714, cg07570470, cg19823504, cg05640731, and cg19307500). For detailed informa-
tion on these and other CpGs described in the present paper, refer to Supplementary File
Illumina_Infinium_methyl_EPIC_array_hg19_ext_attributes.xlsx.

In order to verify our microarray results and validate the entire bioinformatic workflow,
three CpG sites characterized by diverse methylation patterns between the groups of tumors
analyzed herein, cg13488570; chr1:g.(+)2222253 in the SKI(+) gene and two CpGs in the
DHDDS(+) gene, cg26108329; chr1:g.(+)26797585 and cg05304531, chr1:g.(+)26797576, were
further investigated by methylation-specific PCR and Sanger sequencing. Positive results
of this validation are presented in Figure S4.

3.4. Ontological Analyses

By using the ShinyGO web app, we performed a detailed ontology analysis for DM
CpGs, taking into account not only the DNA strand (+/−) on which each CpG site is located,
but also the direction of a methylation change (up- vs. downmethylated CpGs/genes).
The results of our gene ontology (GO)-enrichment analysis (categories: biological process
(BP), molecular function (MF), cellular compartment (CC)), as well as Molecular Signature
Database analysis (MSigDB, Hallmark gene sets) for all inter-tumor-group comparisons,
are presented in Figures S5–S8.

In the BP analyses, we observed downmethylation of genes involved in the regulation
of cytoskeleton/cell adhesion in BOTS compared to carcinomas (Figures S5–S7). Such pro-
cesses were also more frequently downmethylated in BOT than in BOT.V600E. By contrast,
genes involved in the cell cycle progression and RNA metabolism were upmethylated in
BOT compared to BOT.V600E and lgOvCa (Figure S5A,C). Of note, when comparing BOT
to hgOvCa, only genes associated with the cell cycle progression were upmethylated in the
former group (Figure S5E), while the genes involved in RNA metabolism were deregulated
in both directions (Figure S5E,F). Altered DNA methylation was also observed in genes en-
coding proteins regulating the cell cycle when BOT.V600E were compared to lgOvCa, with
hypermethylation in the BOT.V600E group (Figure S5G). Interestingly, genes linked to RNA
processing/metabolism were deregulated in both directions in the BOT.V600E vs. lgOvCa
comparison (Figure S5G,H) but only downmethylated in BOT.V600E compared to hgOvCa
(Figure S5J). In the lgOvCa vs. hgOvCa comparison, only a few cell adhesion-related terms
were enriched, and the genes involved in those processes were deregulated in both direc-
tions (Figure S5K,L). As for the genes participating in RNA metabolism/processing and
the cell cycle regulation, we observed downmethylation in lgOvCa compared to hgOvCa
(Figure S5K,L).

As to the genes involved in cell differentiation, development, and morphogene-
sis, no differences in methylation patterns were found between BOT and BOT.V600E
(Figure S5A,B). Simultaneously, genes involved in the aforementioned terms were mainly
downmethylated in BOTS compared to carcinomas (Figure S5D,F,H,J). Still, in the BOT.V600E
vs. hgOvCa comparison, up- and downmethylation were detected at the same time (Figure S5I,J).
By contrast, when lgOvCa and hgOVCa were compared to each other, genes associated with
differentiation, development, and morphogenesis turned out to be upmethylated in less
aggressive tumors (Figure S5K). Consistently, the genes responsible for neuronal processes
were also upmethylated in lgOvCa compared to aggressive carcinomas (Figure S5K). How-
ever, when this group of genes was investigated in BOTS, their methylation changes did
not differentiate BOT from BOT.V600E (Figure S5A,B). The neuronal processes-related GO
terms were, however, deregulated in both ways when BOTS were confronted with hgOvCa
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(Figure S5E,F,I,J). Finally, when compared to lgOvCa, genes related to neuronal processes were
downmethylated in BOT and upmethylated in BOT.V600E (Figure S5D,G, respectively).

Methylation alterations in genes associated with intracellular transport were identified
when the BOT group was compared to carcinomas with hypomethylation found in more ag-
gressive tumors (Figure S5C,E). Similar regularity was observed in the lgOvCa vs. hgOvCa
comparison, where the transport-related terms were enriched in upmethylated genes in
lgOvCa (Figure S5K). Interestingly, no such GO terms were enriched when BOT.V600E were
compared to carcinomas (Figure S5G–J). Notably, our results of the GO analysis for the MF
and CC categories were consistent with those for BP, presented above (Figures S6 and S7).

In the MSigDB analysis, we observed the upmethylation of genes linked to the TP53
pathway, mTORC1 complex, oxidative phosphorylation, and unfolded protein response
when BOT (but not BOT.V600E) were compared to other tumor groups (Figure S8A,C,E).
By contrast, the same terms were also enriched in genes downmethylated in lgOvCa com-
pared to hgOvCa (Figure S8L). Genes involved in fatty acid metabolism and adipogenesis
were hypermethylated in BOT compared to the other groups. Another process worth
mentioning, glycolysis, differentiated BOT from BOT.V600E, and the related genes were
hypermethylated in the former group (Figure S8A). Genes involved in glycolysis were also
upmethylated in BOT compared to lgOvCa (Figure S8C) and deregulated in both directions
when BOT were compared to hgOvCa (Figure S8E,F). As for the molecular signatures
distinguishing BOT.V600E from lgOvCa, we observed upmethylation of genes involved in
the heme metabolism in the former group (Figure S8G). Remarkably, the same term was
significantly enriched in the BOT vs. BOT.V600E comparison as well, though the changes
in methylation patterns were bidirectional (Figure S8A,B). Another interesting observation
refers to angiogenesis, as genes associated with this process were downmethylated in both
BOTS groups but only compared to hgOvCa (Figure S8F,J). Lastly, the hypermethylation of
genes upregulated by KRAS as well as genes related to epithelial-mesenchymal transition
distinguished lgOvCa from hgOvCa only (Figure S8K) and did not differentiate BOT from
BOT.V600E or BOTS from OvCa (Figure S8A–J).

3.5. The Most Statistically Significant DMRs

Based on p-values, we identified the 10 most significant DMRs for each inter-tumor-
group comparison (Table 3). In Figure 3, the best DMR for every comparison is shown,
being additionally supplemented with the visualization of DNase I hypersensitive sites
(DHSS) as well as transcription factor binding sites (TFBS) to evaluate whether the given
DMR is transcriptionally active.

DMRs distinguishing BOT from BOT.V600E the most occurred mainly in genes in-
volved in lipid/steroid/ester metabolism (NR1H3, ACP2, ACSS2, AKR1D1) and the cell
cycle (KIF23, WEE1).

Interestingly, all the most significant DMRs discriminating BOT from lgOvCa over-
lapped the MHC region on chromosome 6 (about 3.5 million bp in length). These DMRs
were located in genes linked to the immune response (HLA-DMA, GPANK1, LY6G5B, TAPBP,
GNL1) but also to transcription regulation (BRD2, GTF2H4, EHMT2, ZBTB22, DAXX, PHF1),
development and differentiation (BRD2, CSNK2B, PPP1R18, PHF1), DNA repair (MDC1,
GTF2H4, PHF1), apoptosis (CSNK2B, DAXX, NRM), and neuronal functions (SLC44A4,
SYNGAP1, CUTA). Some genes were also associated with cytoskeleton (TUBB, PPP1R18).

In the BOT vs. hgOvCa comparison, the most significant DMRs occurred mainly in
genes participating in transcriptional regulation (EMX2OS, CTBP1, PRAME, MEIS2, ATF6B,
PITX1), differentiation and development (EMX2OS, CTBP1, MEIS2 PITX1), and protein
folding (ATF6B, FKBPL, GORASP2). A few genes were also involved in the regulation of
cytoskeleton (EHBP1, TUBB) and Golgi apparatus (CTBP1, GORSAP2), cell cycle (MDC1,
FKBPL), and lipid metabolism (CPT1B, CHKB).
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Table 3. The most significant differentially methylated regions (DMRs) in all inter-tumor-group
comparisons.

BOT vs. BOT.V600E BOT vs. lgOvCa BOT vs. hgOvCa

chr11:g.both 47269539–47270908;
NR1H3(+)/ACP2(−)

chr6:g.both 32935236–32943025;
BRD2(+)/BRD2-IT1(+)/XXbac-

BPG181M17.6(−)/HLA-DMA(−)

chr2:g.both 63275602–63285097;
EHBP1-AS1(AC009501.4)(−)/OTX1(+)

chr6:g.both 31762409–31763873;
VARS1(−)/NA(+)

chr6:g.both 30684340–30690844;
TUBB(+)/MDC1(−)

chr6:g.both 30683787–30690844;
TUBB(+)/MDC1(−)

chr15:g.(−)69706375–69707291;
KIF23(+)/RP11-253M7.1(KIF23-AS1)(−)

chr6:g.both 31626915–31634890;
C6orf47(−)/C6orf47-

AS1(+)/CSNK2B(+)/GPANK1(−)/LY6G5B(+)

chr10:g.both 119291766–119296942;
EMX2OS(−)/NA(+)

chr6:g.(−)31762409–31763873;
VARS1(−)/NA(+)

chr6:g.both 30874989–30886161;
GTF2H4(+)/VARS2(+)/NA(−)

chr4:g.both 1232112–1236678;
CTBP1(−)/NA(+)

chr20:g.both 33459881–33461321;
ACSS2(+)/GGT7(−)

chr6:g.(+)32935236–32943025;
BRD2(+)/BRD2-IT1(+)/XXbac-

BPG181M17.6(−)/HLA-DMA(−)

chr22:g.both 22899991–22902665;
IGL locus (+):

LL22NC03-63E9.3(+)/PRAME(−)

chr12:g.both 7282081–7283890;
CLSTN3(+)/RBP5(−)/RP11-273B20.1(−)

chr6:g.both 31850189–31857100;
SLC44A4(−)/EHMT2(−)/EHMT2-AS1(+)

chr15:g.both 37391121–37395115;
MEIS2(−)/RP11-128A17.1(+)

chr7:g.both 137686266–137687260;
AKR1D1(+)/CREB3L2(−)

chr6:g.both 33279563–33287809;
TAPBP(−)/ZBTB22(−)/DAXX(−)/ NA(+)

chr6:g.both 32094845–32098253;
ATF6B(−)/FKBPL(−)/NA(+)

chr6:g.both 32861863–32862953;
LOC100294145(+)/HLA-Z(+)NA(−)

chr6:g.both 30519312–30525976;
GNL1(−)/PRR3(+)

chr22:g.both 51016386–51017723;
CPT1B(−)/CHKB-CPT1B(−)/CHKB-

DT(+)/CHKB(−)

chr11:g.both 9595191–9596475;
WEE1(+)/NA(−)

chr6:g.both 30651511–30659692;
PPP1R18(−)/NRM(−)/NA(+)

chr2:g.both 171784610–171786316;
GORASP2(+)/NA(−)

chr11:g.(+)47269539–47270669;
NR1H3(+)/ACP2(−)

chr6:g.both 33381680–33387205;
PHF1(+)/SYNGAP1(+)/CUTA(−)

chr5:g.both 134362967–134369605;
PITX1(−)/PITX1-AS1(+)

BOT.V600E vs. lgOvCa BOT.V600E vs. hgOvCa lgOvCa vs. hgOvCa
chr6:g.both 30651511–30654559;

PPP1R18(−)/NA(+)
chr1:g.both 2221807–2222674;

SKI(+)/NA(−)
chr10:g.both 134977981–134981930;

KNDC1(+)/NA(−)

chr6:g.both 31733434–31734580;
VWA7(−)/SAPCD1-AS1(−)/NA(+)

chr19:g.both 58220080–58220818;
ZNF551(+)/AC003006.7(+)/ZNF154(−)

chr6:g.both 32044869–32057846;
TNXB(−)/RNA5SP206(−)/NA(+)

chr1:g.both 19664276–19665757;
CAPZB(−)/NA(+)

chr1:g.both 1102276–1106175;
MIR200B(+)/MIR200A(+)/MIR429(+)/TTLL10(+)/RP11-

465B22.8(+)/NA(−)

chr6:g.both 30127760–30132715;
TRIM15(+)/TRIM10(−)

chr6:g.both 152127812–152129791;
ESR1(+)/ NA(−)

chr17:g.both 78865087–78866579;
RPTOR(+)/NA(−)

chr19:g.both 405795–409510;
C2CD4C(−)/NA(+)

chr7:g.both 964629–967277;
ADAP1(−)/NA(+)

chr22:g.both 51016386–51017723;
CPT1B(−)/CHKB-CPT1B(−)/CHKB-

DT(+)/CHKB(−)

chr10:g.both 119291766–119297716;
EMX2OS(−)/EMX2(+)

chr11:g.61521905–61523045;
MYRF(+)/MYRF-AS1(−)/RP11-467L20.10(−)

chr16:g.2082689–2083393;
NHERF2(SLC9A3R2)(+)/NA(−)

chr12:g.both 132686912–132689907;
GALNT9(−)/NA(+)

chr3:g.both 129692836–129694665;
TRH(+)/NA(−)

chr19:g.(+)58220080–58220818;
ZNF551(+)/AC003006.7(+)/ZNF154(−)

chr12:g.both 132847907–132856142;
LOC100130238(+)/GALNT9(−)/RP13-

895J2.3(+)

chr12:g.both 6483708–6487080;
LTBR(+)/SCNN1A(−)

chr3:g.both 185911208–185912486;
DGKG(−)/NA(+)

chr4:g.both 100571622–100574653;
NA(+)/C4orf54(−)

chr3:g.both 188664632–188666540;
TPRG1(+)/TPRG1-AS1(−)

chr16:g.(−)2082745–2083178;
NHERF2(SLC9A3R2)(+)/NA(−)

chr16:g.both 1127792–1132709;
SSTR5(+)/SSTR5-AS1(−)

chr3:g.(+)129692836–129694665;
TRH(+)/NA(−)

chr1:g.(+)1102276–1106175;
MIR200B(+)/MIR200A(+)/MIR429(+)/TTLL10(+)/RP11-

465B22.8(+)/NA(−)

chr16:g.both 1428639–1430367;
UNKL(−)/NA(+)

Names of genes encompassed by the given DMR, including the DNA strand (+/−) on which the coding sequence
of the gene is located, are emboldened. Overlapping genes are separated with a slash (/). A chromosomal
localization for each DMR, along with the information whether the DMR was calculated for the plus (+), minus
(−) or both DNA strands, is shown above gene name(s).
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the coding sequence of each gene is located. Below, a chromosome ideogram, graphical representa-
tion of the genomic range, and DMR location within the genome are shown. These are followed by 
a line + dot plot demonstrating the distribution of beta values for each CpG and sample (dot) along 
with mean values for each CpG (line). The visualization of Dnase I hypersensitive sites (DHSS) and 
transcription factor binding sites (TFBS) is also provided for the assessment of transcriptional activ-
ity in each DMR. (A): BOT vs. BOT.V600E (chr11:g.both 47269539–47270908); (B): BOT vs. lgOvCa 
(chr6:g.both 32935236–32943025); (C): BOT vs. hgOvCa (chr2:g.both 63275602–63285097); (D): 
BOT.V600E vs. lgOvCa (chr6:g.both 30651511–30654559); (E): BOT.V600E vs. hgOvCa (chr1:g. 
2221807–2222674); (F): lgOvCa vs. hgOvCa (chr10:g.both 134977981–134981930). 
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ZNF154). 
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vealed in genes participating in neuronal processes (KNDC1, EMX2, SSTR5), ubiquitina-
tion (TRIM15, TRIM10, UNKL), cytoskeletal regulation/adhesion (TNXB, TRIM15), differ-
entiation/development (EMX2, TRIM10), and immune response (TRIM15, TRIM10). 

Figure 3. Context plots depicting the most significant DMR for each inter-tumor-group comparison.
Each plot title contains encompassed gene name(s) with the DNA strand identifier (+/−), on which
the coding sequence of each gene is located. Below, a chromosome ideogram, graphical representation
of the genomic range, and DMR location within the genome are shown. These are followed by
a line + dot plot demonstrating the distribution of beta values for each CpG and sample (dot) along
with mean values for each CpG (line). The visualization of Dnase I hypersensitive sites (DHSS)
and transcription factor binding sites (TFBS) is also provided for the assessment of transcriptional
activity in each DMR. (A): BOT vs. BOT.V600E (chr11:g.both 47269539–47270908); (B): BOT vs.
lgOvCa (chr6:g.both 32935236–32943025); (C): BOT vs. hgOvCa (chr2:g.both 63275602–63285097);
(D): BOT.V600E vs. lgOvCa (chr6:g.both 30651511–30654559); (E): BOT.V600E vs. hgOvCa (chr1:g.
2221807–2222674); (F): lgOvCa vs. hgOvCa (chr10:g.both 134977981–134981930).

When comparing BOT.V600E to lgOvCa, we observed some similar processes as for
the BOT vs. lgOvCa comparison. Genes linked to immune processes (ADAP1, LTBR,
TPRG1) were also identified as differentially methylated, but they were not so abundant.
The most significant DMRs were associated with neurological processes (ADAP1, MYRF,
SCNN1A), adhesion (PPP1R18, CAP2B, SCNN1A), and lipid metabolism (ESR1, LTBR), too.

If BOT.V600E were confronted with hgOvCa, the biggest differences in methylation pat-
terns were found in genes involved in lipid metabolism (CPT1B, CHKB, DGKG), cytoskeletal
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regulation (TTLL10, NHERF2), neurological processes (SKI, RPTOR), differentiation and
development (RPTOR, SKI), and the regulation of transcription (ZNF551, ZNF154).

Finally, the biggest methylation alterations between lgOvCa and hgOvCa were re-
vealed in genes participating in neuronal processes (KNDC1, EMX2, SSTR5), ubiquitination
(TRIM15, TRIM10, UNKL), cytoskeletal regulation/adhesion (TNXB, TRIM15), differentia-
tion/development (EMX2, TRIM10), and immune response (TRIM15, TRIM10).

3.6. Cox and Logistic Regression Analyses for DMRs in BOTS and hgOvCa

Each DMR had to be differentially methylated in at least one of six inter-tumor-group
comparisons to be subjected to the regression testing, which gave the total number of
128,168 tested DMRs. Uni- and multivariable regression analyses were carried out for all
BOTS and hgOvCa available in our sample set. Remarkably, due to the small number of
specimens making the multivariable statistical testing impossible, the lgOvCa group was
excluded from the regression analysis herein.

To decrease the risk of false-positive hits, we decided to change the statistical sig-
nificance level (alpha) of our Cox regression models and logistic regression models (lrm)
in hgOvCa to 0.0005 and 0.005, respectively. Considering the relatively small size of the
BOTS series, the default alpha value of 0.05 was kept in all regression models performed
in this series of tumors. To further decrease the risk of obtaining false-positive hits, we
focused on those DMRs only for which the results of univariable and multivariable re-
gression tests matched. The models were considered matching when the analyzed DMRs
and groups of tumors were the same, both p-values < alpha value, both HR/OR values
either higher or lower than 1, and concomitantly the discriminative capabilities of all
models, uni- and multivariable, before and after a bootstrap-based cross-validation were
good enough (all AUC values > 0.7). This approach let us identify 112 and 168 unique
matching DMRs in Cox and lrm analyses in hgOvCa, respectively. For BOTS, we obtained
143 matching DMRs, all in the lrm analysis. The detailed results of our regression anal-
yses are provided in Supplementary Files: Reg.analyses.Cox.hgOvCa.p.val.0.0005.xlsx,
Reg.analyses.lrm.hgOvCa.p.val.0.005.xlsx, and Reg.analyses.lrm.BOTS.p.val.0.05.xlsx, col-
lectively abbreviated as Reg.anal.suppl.results. We also performed the GO analysis for all
the genes identified in our regression tests as good discriminators in hgOvCa and BOTS.
The enriched GO terms along with the genes assigned to each term are provided in Tables
S5 and S6, respectively. Next, we nominated five DMRs with the lowest p-values from each
of the three xlsx files as the most promising potential biomarkers in BOTS and hgOvCa. The
regression analyses’ results for these DMRs are described below and presented in Table 4,
and in Figures 4 and 5. For detailed information on the DMRs listed in this table, including
the CpG sites forming each DMR, refer to Supplementary Table S7.

In hgOvCa, we managed to identify DMRs predictive of both cancer prognosis and
response to chemotherapy. In the former group, all the DMRs were located on chromo-
some 22, two of them, chr22:g.(−)35776686–35777032 and chr22:g.(−)35775959–35777032,
overlapped the HMOX1 gene, whereas the remaining three, chr22:g.(−)31002067–31003655,
chr22:g.both 31002067–31003655, and chr22:g.both 31002362–31004367, encompassed the
TCN2, PES1, and RP1-56J10.8 genes. Hypermethylation of HMOX1-containing DMRs
improved the overall survival of hgOvCa patients treated with taxane/platinum (TP),
whose tumors exhibited accumulation of the TP53 protein. This favorable factor turned
out to be independent of a large residual tumor size, being the marker of poor prognosis.
Similarly to the HMOX1-overlapping DMRs, those encompassing the TCN2, PES1, and
RP1-56J10.8 genes, if hypermethylated, were also predictors of good prognosis, and their
clinical importance was revealed in the TP-treated patients and/or those with tumors
harboring the accumulation of the TP53 protein.
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Table 4. The selected results of multivariable Cox and logistic regression analyses for DMRs with the
best discriminative capabilities in hgOvCa and BOTS.

hgOvCa

Cox Regression (alpha = 0.0005) Mean beta Value (%) for DMR

OS in the TP53 Accumulation = Yes Subgroup HR [95% Cl] p-Value BOT BOT V600E lgOvCa hgOvCa

HMOX1(+)/NA(−):
chr22:g.(−)35776686–35777032 a 8.4 × 10−5 [0–0.005] 4.11 × 10−6 51.05 54.64 49.59 45.18

Residual tumor > 2 cm vs. 0 cm 6.24 [2.315–16.823] 0.0003

OS in the TP therapy and TP53 accumulation = yes subgroup

HMOX1(+)/NA(−):
chr22:g.(−)35775959–35777032 b 3.71 × 10−6 [0–0.001] 4.33 × 10−6 63.24 66.81 65.14 60.05

Residual tumor > 2 cm vs. 0 cm 8.3 [2.525–27.269] 0.0005

TCN2(+)/PES1(−)/RP1-56J10.8(+):
chr22:g.(−)31002067–31003655 c 1.13 × 10−7 [0–0] 5.26 × 10−6 36.66 32.48 31.57 26.55

TCN2(+)/PES1(−)/RP1-56J10.8(+):
chr22:g.both 31002067–31003655 c 4.06 × 10−11 [0–0] 6.35 × 10−6 27.65 23.92 22.3 18.88

TCN2(+)/PES1(−)/RP1-56J10.8(+):
chr22:g.both 31002362–31004367 c 1.15 × 10−9 [0–0] 7.31 × 10−6 31.29 27.29 25.84 22.48

Logistic regression (alpha = 0.005) Mean beta value (%) for DMR

CR in the TP therapy subgroup OR [95% Cl] p-value BOT BOT V600E lgOvCa hgOvCa

NA(−)/NA(+):
chr16:g.(−)880831–880831 5.14 [2.207–11.957] 0.00015 83.21 85.29 92.53 77.47

CR in the whole group (full table)

ABR(−)/NA(+):
chr17:g.(−)1131424–1131781 d 7.86 [2.566–24.063] 0.00031 31.71 26.14 38 21.59

NA(−)/NA(+):
chr16:g.(−)880831–880831 3.4 [1.72–6.707] 0.00043 83.21 85.29 92.53 77.47

NCAM1(+)/RP11-629G13.1(−):
chr11:g.(−)112831728–112832249 c 4.77 [1.975–11.535] 0.00052 28.82 19.77 17.35 13.42

AC006372.4 (+)/NA(−):
chr7:g.(−)157258854–157259343 c 5.54 [2.104–14.596] 0.00053 57.89 60.4 65.37 42.17

PS in the whole group (full table)

NPTXR(−)/NA(+):
chr.22:g.(+)39240094–39240424 4.04 [1.81–9.03] 0.00066 13.97 8.24 3.42 3.86

Residual tumor > 2 cm vs. 0 cm 0.042 [0.006–0.294] 0.0014

BOTS

Logistic regression (alpha = 0.05) Mean beta value (%) for DMR

The presence of microinvasion and/or
non-invasive implants in the whole group

(full table)
OR [95% Cl] p-value BOT BOT V600E lgOvCa hgOvCa

BAIAP3(+)/NA(−):
chr.16:g.(−)1389301–1389301 49.04 [1.863–1290.778] 0.02 45.4 52.22 63.23 38.27

IL34(+)/NA(−):
chr16:g.both 70613332–70613944 0.168 [0.037–0.769] 0.022 52.68 49.89 42.6 47.9

FIGO II/III vs FIGO IA/IB 185.5 [2.166–15883.94] 0.021

IL34(+)/NA(−):
chr16:g.(−)70613332–70613944 0.139 [0.025–0.759] 0.023 54.96 51.69 47.07 50.71

FIGO II/III vs. FIGO IA/IB 117.39 [1.936–7116.43] 0.023

WNT10A(+)/NA(−):
chr2:g.(+)219748780–219748780 0.14 [0.025–0.762] 0.023 41.98 36.23 44.2 30.48

FIGO II/III vs. FIGO IA/IB 157.11 [1.691–14593.4] 0.029

NEU1(−)/SLC44A4(−)/NA(+):
chr.6:g.(+)31827414–31834178 0.022 [0.001–0.601] 0.024 53.63 53.38 53.2 53.14

FIGO II/III vs. FIGO IA/IB 569.6 [1.093–296737.5] 0.047

OS—overall survival; HR—hazard ratio; OR—odds ratio; CR—complete remission; PS—platinum sensitivity;
TP—taxane/platinum chemotherapy; a—the same regularity was found in the subgroup: TP therapy and TP53
accumulation = yes; b—the same regularity was found in the subgroup: TP53 accumulation = yes; c—the same
regularity was found in the TP-treated subgroup; d—the same regularity was found for CR in the TP-treated
subgroup and for PS in both the whole group and the TP-treated subgroup. The missing models can be found in
Reg.anal.suppl.results.
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Figure 4. Nominated regression analyses for selected DMRs in hgOvCa. (A–F): Cox regression anal-
ysis (OS) in the subgroup of tumors with TP53 accumulation for the HMOX1(+)/NA(−) genes. (A,B): 
AUC plot for uni- and multivariable models obtained before (A) and after (B) a bootstrap-based 
cross-validation of the original data set. A red dashed line in B indicates the same time point which 
was used to draw the time-dependent ROC curve (C). An optimal cutoff point for this ROC curve, 

Figure 4. Nominated regression analyses for selected DMRs in hgOvCa. (A–F): Cox regression
analysis (OS) in the subgroup of tumors with TP53 accumulation for the HMOX1(+)/NA(−) genes.
(A,B): AUC plot for uni- and multivariable models obtained before (A) and after (B) a bootstrap-based
cross-validation of the original data set. A red dashed line in B indicates the same time point which
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was used to draw the time-dependent ROC curve (C). An optimal cutoff point for this ROC curve,
was calculated based on the multivariable model using the Youden index. Discrimination sensitivity
and specificity values for this cutoff point are also provided. (D): Kaplan-Meier survival curves
obtained for the patients divided into two categories (risk higher (high) or lower (low) than for the
ROC curve (C)-estimated cutoff point) based on the risk of death, calculated using the multivariable
model. The Kaplan-Meier curves are supplemented with the result of the log-rank test, as well. Box
(E) and bar (F) plots depicting mean methylation beta values within the DMR in patients with the high
or low risk of death. (G–I): logistic regression analysis (CR) for a DMR in unknown gene(s), in the
subgroup of patients treated with the TP regimen. (G): ROC curves for uni- and multivariable logistic
regression models. Box (H) and bar (I) plots depicting mean methylation beta values within the DMR
in patients with (1) and without (0) CR. RT: residual tumor; TP: taxane/platinum chemotherapy; CR:
complete remission. Low p-values are displayed in exponential notation (e−n), in which e (exponent)
multiplies the preceding number by 10 to the minus nth power.
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Residual tumor > 2 cm vs. 0 cm 6.24 [2.315–16.823] 0.0003     

OS in the TP therapy and TP53 accumulation = yes subgroup 

HMOX1(+)/NA(−):$$$$chr22:g.(−)35775959–35777032 b 3.71 × 10−6 [0–0.001] 4.33 × 10−6 63.24 66.81 65.14 60.05 

Residual tumor > 2 cm vs. 0 cm 8.3 [2.525–27.269] 0.0005     

TCN2(+)/PES1(−)/RP1-
56J10.8(+):$$$$chr22:g.(−)31002067–31003655 c 1.13 × 10−7 [0–0] 5.26 × 10−6 36.66 32.48 31.57 26.55 

Figure 5. A nominated logistic regression analysis for a DMR in the BAIAP3(+)/NA(−) gene in
the whole group of BOTS patients (Full table). (A): ROC curves for uni- and multivariable logistic
regression models; Box (B) and bar (C) plots depicting mean methylation beta values within the DMR
in tumors with (Yes) and without (No) microinvasion/non-invasive implants.

As to the response to chemotherapy, the strongest predictor was a single CpG site,
cg10273669, located on the minus strand of chromosome 16, chr16:g.(−)880831–880831.
Its hypermethylation increased the chance of tumor complete remission (CR), and this
regularity was found in the entire cohort of hgOvCa patients and also in those who
underwent the TP treatment. In addition, we identified two other DMRs, NCAM1(+)/RP11-
629G13.1(−):chr11:g.(−)112831728–112832249 and AC006372.4(+)/NA(−):chr7:g.(−)
157258854–157259343, that could potentially be used to predict the treatment outcome.
Hypermethylation in both these regions was recognized herein as the favorable factor
increasing the probability of cancer remission. This association was found in the entire
cohort of patients and the subgroup treated with TP, as well. When the impact on platinum
sensitivity (PS) was considered, two promising potential biomarkers were discovered in
our study. The first DMR, NPTXR(−)/NA(+):chr.22:g.(+)39240094–39240424, was located
on chromosome 22 and encompassed the NPTXR gene. The elevated methylation of CpGs
forming this DMR emerged as an advantageous predictive marker, increasing the sensitiv-
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ity of the tumors to chemotherapy. Its clinical meaning turned out to be independent of
the large residual disease, being the factor that significantly worsened cancer prediction.
The last DMR, ABR(−)/NA(+):chr17:g.(−)1131424–1131781, being located on chromosome
17 and overlapping the ABR gene, was found herein to affect CR and PS alike, and, similarly
to other DMRs described in this section, its hyperpermethylation made the hgOvCa tumors
more sensitive to chemical treatment in both the entire cohort of patients and also those
treated with TP.

In BOTS, no prognostic factors (determining relapse-free surivival (RFS)) were found,
but still we managed to identify DMRs potentially suitable as biomarkers predictive of the
occurrence of microinvasion and/or non-invasive implants. All these DMRs were discov-
ered in the entire cohort of BOTS patients, irrespective of the presence of the BRAF V600E
mutation in tumors. The DMR on chromosome 16, BAIAP3(+)/NA(−):chr.16:g.(−)1389301–
1389301, containing a single CpG site in the BAIAP3 gene, cg01881308, may be consid-
ered the most promising biomarker in BOTS given the lowest p-value of all analyzed
DMRs. Remarkably, out of all DMRs presented in this section, this was the only one
the hypermethylation of which was a negative predictive factor, elevating the risk that
microinvasion or non-invasive implants occur. Methylation changes in all the remain-
ing DMRs in BOTS, listed in Table 4, exhibited a similar clinical effect, as hypermethy-
lation of each of the following regions, IL34(+)/NA(−):chr16:g.both 70613332–70613944;
IL34(+)/NA(−):chr16:g.(−)70613332–70613944; WNT10A(+)/NA(−):chr2:g.(+)219748780–
219748780; and NEU1(−)/SLC44A4(−)/NA(+):chr.6:g.(+)31827414–31834178, was identified
herein as a favorable clinical factor, decreasing the risk of microinvasion and/or non-
invasive implants in BOTS. All these four DMRs were found to be potential biomarkers
independent of the high FIGO stage, being a strong, negative predictive factor.

4. Discussion

In this study, the global genome-wide hypomethylation positively correlated with the
increasing aggressiveness of ovarian tumors, being the strongest in hgOvCa. As expected,
the TP53 tumor suppressor gene was hypermethylated in carcinomas compared to BOTS.
The methylation was especially high in TP53 exons in lgOvCa, where no missense mu-
tations were found. Remarkably, all the ten most significant DMRs, discriminating BOT
from lgOvCa, encompassed the MHC region on chromosome 6, where genes linked to the
immune response are located. Of note, the biggest number of unique DM CpGs and DMRs
was found between lgOvCa and hgOvCa, thus corroborating vast methylation differences
between these two cancer types reported by others [11]. By contrast, the BOT.V600E tumors
had the lowest number of DM CpGs and DMRs compared to all other groups and, in
relation to BOT, their genome was strongly downmethylated. This suggests that extensive
hypomethylation is what distinguishes BOT.V600E from BOT and, when methylome is
considered, BOT.V600E tumors might be placed somewhere in-between BOT and OvCa.
By assessing differentially methylated CpGs, we revealed downmethylation of genes in-
volved in the regulation of cytoskeleton/cell adhesion in BOTS compared to carcinomas.
Such processes were also more frequently downmethylated in BOT than in BOT.V600E. By
contrast, genes involved in cell cycle progression and RNA metabolism were upmethylated
in BOT compared to BOT.V600E and lgOvCa. When comparing BOT to hgOvCa, only
genes associated with cell cycle progression were upmethylated in the former group. As
to the genes involved in cell differentiation, development, and morphogenesis, they were
mainly downmethylated in BOTS compared to carcinomas. By contrast, when lgOvCa
and hgOvCa were compared, such genes turned out to be upmethylated in less aggressive
tumors, suggesting that in highly undifferentiated cancers, likely in the subpopulation
of cancer stem cells (CSC), the pathological differentiation to various cell lineages might
be advantageous for hgOvCa cells, enabling their epithelial-mesenchymal plasticity [28].
Lastly, in lgOvCa compared to hgOvCa, we detected the hypermethylation of genes upreg-
ulated by KRAS as well as genes related to epithelial-mesenchymal transition. These terms
did not differentiate either BOT from BOT.V600E or BOTS from OvCa. We also identified
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hundreds of DMRs in the genome, being of potential use as predictive biomarkers in BOTS
and hgOvCa. DMRs with the best discriminative capabilities overlapped the following
genes: BAIAP3, IL34, WNT10A, NEU1, SLC44A4, and HMOX1, TCN2, PES1, RP1-56J10.8,
ABR, NCAM1, RP11-629G13.1, AC006372.4, NPTXR in BOTS and hgOvCa, respectively.

Methylation changes are often associated with the initial phase of tumorigenesis and
can serve as valuable prognostic and predictive markers [2,29]. Notably, our methylome
analyses were performed not only collectively in both DNA strands but also independently
in separate strands (either plus or minus) to enhance the precision of the entire workflow.
To date, in the literature, there were practically no scientific reports utilizing a similar
approach, except for a study demonstrating that CpG methylation solely on the sense DNA
strand of the APC gene was specific to hepatocellular carcinoma [30]. Another noteworthy
feature of our workflow is its capability to determine methylation alterations in functionally
annotated gene regions, including not only coding sequences, but also intron/exon bound-
aries, introns, UTRs, and proximal and distal promoters. So far, for ovarian tumors, no
scientific reports employing such a comprehensive and detailed analytical workflow have
been published, which makes our study unique and exceptionally thorough. Alterations
in promoter methylation and their influence on gene expression are quite well known in
ovarian cancer [27,31]. However, intragenic methylation changes have also been shown
to affect transcription. Singer et al. [32] demonstrated two opposite phenomena. Firstly,
they observed that some exons are more highly methylated than adjacent introns. Yet, they
also identified a subset of mostly hypomethylated exons, which was associated with loose
chromatin and thus higher transcriptional activity. Other studies showed that the methyla-
tion of first exons [26] and first introns [33] was negatively correlated with transcription,
too. Aberrant methylation within the 3′UTRs possibly also affects gene expression, as it
was shown that high methylation level of 3′UTRs may stimulate transcription [34]. This
outcome, seemingly antithetical with those observed for promoter regions, suggests that the
interplay between gene methylation and expression is far more complex and conceivably
involves other regulatory processes. In fact, two possible mechanisms might link DNA
methylation to gene expression. The first one involves proteins with domains binding to
methylated DNA, acting as anchors for other proteins, being gene activity regulators. The
second mechanism may rely on changes in DNA properties, such as its affinity to transcrip-
tion factors and the 3-dimensional structure of chromatin [35]. Furthermore, it needs to be
emphasized that gene expression depends not only on DNA methylation alterations but
also on other phenomena, e.g., the miRNA-guided transcriptional control [36].

Of note, the results of our methylation analysis within gene regions, for the genes
discussed below but not described in the Results section, are available in the Supplementary
File: GeneRegions.pdf (GR file).

Cancer methylome changes cannot be simply put as either hypo- or hypermethylation
of the genome. In fact, both these events occur in malignant cells to some extent, with a
tendency towards global, genome-wide hypomethylation in advanced carcinomas. How-
ever, hypermethylation of CpG islands associated with, e.g., tumor suppressor genes and
developmental regulators is also the hallmark of cancer cells. Additionally, methylation
patterns can change dynamically at different stages of tumorigenesis [27,37]. The results
shown herein are consistent with those presented in the papers cited above, since we found
both hyper- and hypomethylated CpGs and DMRs in our series of cancers, especially in
the hgOvCa group, compared to BOTS.

In the results section, we first concentrated on methylation changes within the MDM2/
TP53/CDKN1A axis, involved in the control of genomic stability [25], as this aspect is
still relatively poorly investigated. Despite the fact that we did not find either missense
mutations or TP53 protein accumulation in our lgOvCa tumors, we discovered strong
hypermethylation of the TP53 gene in this tumor group compared to all the others. This
implies that, in lgOvCa, the activity of the TP53 tumor suppressor may be mainly decreased
by epigenetic changes and not mutations. So far, this phenomenon has not been reported
by other researchers. Decreased methylation of MDM2 in hgOvCa probably results in
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the overexpression of this oncogene, which further impairs the anticancer role of TP53, as
MDM2 catalyzes TP53 polyubiquitination, thus causing its degradation in proteasomes [38].
As for another tumor suppressor gene, CDKN1A, we expected it to be hypermethylated in
OvCa compared to BOTS, as the high CDKN1A promoter methylation, leading to its low
expression, can help cancer cells evade the cell cycle arrest by diminishing the amount of the
p21 tumor suppressor, being a product of this gene [39]. In line with this assumption, the
CDKN1A promoter hypermethylation was found in various cancers, such as lung, prostate,
breast and pancreatic cancer, and leukemia. However, depending on the molecular context,
p21 may play either an oncogenic or a tumor-suppressor role [39]. In ovarian cancer
cells, especially those harboring the TP53 mutations, the mechanism of CDKN1A action
may be different, given that the p21 activity depends on TP53 [40]. As shown in our
previous study [21], over 60% of hgOvCa samples harbored missense TP53 mutations,
leading mainly to TP53 protein accumulation. By contrast, in lgOvCa, lacking genetic
alterations in TP53, exceptionally strong hypermethylation of TP53 was detected herein, as
mentioned above. Thus, in both carcinoma groups investigated in this paper, the activity
of TP53 seemed substantially impaired which arguably affected its interactions with p21,
too. Considering that some genetic alterations in TP53 have previously been reported as
gain-of-function, oncogenic mutations [41], it is probable that the role of CDKN1A and p21
may also change from anticancer to cancer-promoting when the TP53-dependent molecular
context is aberrated. Such a functional shift would explain the negative correlation between
CDNK1A methylation and tumor aggressiveness revealed in the present study.

Our ontological analyses showed that the processes mainly deregulated in our tumor
groups were development/differentiation, adhesion, nervous system, cell cycle, and pro-
cesses affecting RNA metabolism. Cell differentiation and development are predominantly
controlled by transcription co-regulators belonging to the Polycomb group (PcG), including
Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2) [42], as well as their targets. One of
the PRC targets, the HOXA5 gene, seems to play a significant role in ovarian biology and
may be involved in ovarian cancer predisposition, since the loss of HOXA5 function leads
to the formation of ovarian epithelial cysts in older females [43,44]. Moreover, the promoter
region of this gene was shown to be hypermethylated in breast cancer [45]. Consistently, in
our study, we found high methylation in the coding sequence (cds), distal promoter, and
exonic regions of HOXA5, especially in hgOvCa but also in BOT.V600E compared to BOT
(GR file). In contrast to hypermethylation of Polycomb target genes, in OvCa, we observed
hypomethylation of Polycomb genes, as well. In the EZH2 gene (encoding a protein being
a member of the PRC2 complex), especially in hgOvCa compared to BOTS, we detected
strong hypomethylation in many regions, including the first exon/5′UTR, exons, and both
promoters (GR file). The BMI1 gene (the protein product of which is a part of the PRC1
complex) was also hypomethylated in many regions not only in hgOvCa (exons, 3′UTR
and distal promoter) but in both carcinoma groups (proximal promoter and the first exon),
which implies its high expression in OvCa (GR file). Remarkably, one study supports our
results, proving that overexpression of BMI1 in ovarian cancer promotes metastasis, decel-
erates apoptosis, and desensitizes tumor cells to platinum treatment [46]. Of note, in the
present study, the genes involved in cell differentiation, development, and morphogenesis
were downmethylated in BOTS compared to carcinomas. By contrast, when lgOvCa and
hgOvCa were confronted with each other, such genes turned out to be upmethylated in
less aggressive tumors, suggesting that in highly undifferentiated cancers, likely in the
subpopulation of CSC, the pathological differentiation to various cell lineages might be
advantageous for hgOvCa cells, enabling their epithelial–mesenchymal plasticity [28,47].

Adhesion and cytoskeletal processes were enriched in genes mainly downmethylated
in BOTS compared to carcinomas and also when BOT were confronted with BOT.V600E.
Two studies employing gene expression microarrays, performed on a small group of
cystadenomas, BOTS, and OvCa, all of a serous type, seem to support our results. One
of the reports unraveled that the malignant subtype of BOTS exhibited a cell adhesion
signature [48], whereas in the other, genes implicated in adhesion, cell cycle, and motility
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were shown to account for phenotypic differences between borderline tumors and high-
grade cancers [49].

GO terms associated with the nervous system were also significantly enriched in
differentially methylated genes herein. The literature data are mostly consistent with
our results, demonstrating that the pathway enrichment analysis for transcriptomic data
revealed neural activities (axon guidance, neurogenesis) as promoters of ovarian cancer
progression and indicators of poor prognosis. Moreover, four neural genes (NTN1, UNC5B,
EFNB2, and EFNA5) were nominated as promising biomarkers and therapeutic targets in
ovarian cancer patients [50]. Notably, in our regression analyses for DMRs in hgOvCa,
predictive capabilities were not confirmed for any of those genes when methylation changes
were considered. Another study unveiled the correlation between the elevated expression
of neuronal transcription factor Brn-3a (POU4F1) and the decreased rate of apoptosis
in ovarian cancer cells [51]. Consistently, we observed significant hypomethylation in
the proximal promoter of POU4F1 in carcinomas compared to BOTS, as well as in the
first exon in hgOvCa in comparison with the remaining groups (GR file). A putative
tumor suppressor, ZIC1, involved in neurogenesis, dorsal spinal cord development, and
maturation of the cerebellum [40] was shown to be hypermethylated and silenced in OvCa.
This was correlated with increased proliferation, migration, and invasiveness of tumor
cells [52]. Our results align with these findings, as we revealed strong hypermethylation of
ZIC1 in carcinomas compared to BOTS in most regions of the gene (GR file).

As to the cell cycle, hypermethylation of genes coding for cell cycle inhibitors, like
p16INK4a (CDKN2A) and p15INK4b (CDKN2B), is a well-known phenomenon, reported
for various tumors [53]. Conversely, in the present study, we observed hypo- rather than
hypermethylation of these two genes in carcinomas compared to BOTS. This seemingly
antithetical outcome may be attributed to missense mutations in the TP53 gene, occurring
in hgOvCa. As we demonstrated in our previous research [15,16], the TP53 status can
determine the clinical significance of other molecular biomarkers. However, this theory
does not explain hypomethylation of those genes in lgOvCa, where neither TP53 missense
variants were found [21] nor TP53 protein accumulation was detected [15]. Nevertheless,
as discussed above, the TP53 methylation was exceptionally high in our lgOvCa series,
which suggests that the level of TP53 protein in these tumors was conceivably too low to
maintain its tumor suppressor activity.

When comparing BOTS to OvCa, genes involved in RNA transcription, metabolism,
and processing were deregulated bidirectionally in our study. As to the transcription-
related genes (coding for polymerase II subunits), the POLR2D gene was significantly
hypomethylated not only in carcinomas (across almost all gene regions, except for 3′UTRs),
but also in BOT.V600E (proximal promoter) compared to BOT (GR file). By contrast, some
other genes encoding the polymerase II subunits were characterized by higher methylation
in carcinomas than in BOTS (e.g., promoters and/or first exons of POLR2G and POLR2L, as
well as the distal promoter of POLR2C, and the cds of POLR2E, GR file). These findings are
supported by the study by Bhandari et al. [54], who revealed overexpression of POLR2D in
multiple cancers, and also showed the POLR2L gene to be hypermethylated in a non-small-
cell lung cancer cell line.

RNA metabolism and processing relies mainly on RNA binding proteins (RBPs). The
role of genes encoding such proteins, LUC7L2, MRPL46, MRPL14, PARP4, STRAP, and
PAPOLA, in ovarian tumor development has already been investigated in the literature [55].
In our study, those genes (except for PARP4) were predominantly hypomethylated in
carcinomas compared to the BOT groups (GR file). Another RBP-coding gene, CELF2,
was also downmethylated, in the hgOvCa series tested here and in the majority of OvCa
cell lines assessed by Piqué et al. [56]. Nonetheless, in contradiction to these findings, the
expression of CELF2 was shown to positively correlate with better prognosis in ovarian
cancer patients [57].

Interestingly, in our ontological analyses, some terms prevailed if a particular tumor
group was compared to others, e.g., in the BOT group, fatty acid metabolism and adipogen-
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esis were significantly enriched in hypermethylated genes in all three possible comparisons.
This outcome is consistent with the literature, since upregulated lipid metabolic pathways
were found to increase lipogenesis and lipolysis via exogenous and endogenous uptakes,
thus allowing cancer cells to enhance membrane biogenesis and ATP production, and
finally to evade apoptosis. In line with this notion, the researchers showed a high level of
lipoproteins in serous hgOvCa and concomitantly increased transfer of cholesterol, phos-
pholipids, and triglycerides to such tumors compared to serous BOTS [58]. Furthermore,
the increased rate of fatty acid beta-oxidation leads to higher ATP production and faster
cellular lamellipodia formation, which facilitates tumor cell migration and invasion [59].

Notably, two other ontological terms were enriched in our study only if two OvCa
groups were compared to each other. One of these terms involved genes upregulated
by KRAS, while the other was related to epithelial–mesenchymal transition (EMT). Both
these terms were enriched in genes hypermethylated in lgOvCa. Given that there were
no KRAS-activating mutations in our hgOvCa [21], hypomethylation of KRAS-dependent
genes may be the way for these tumors to induce cell proliferation in the presence of a
normal KRAS protooncogene. As to the EMT-related genes, their downmethylation in
hgOvCa was expected, as it probably increased the aggressiveness, chemoresistance, and
potential for metastasis of such cancers, e.g., by the overexpression of Snail transcription
factors [47]. Accordingly, when we examined differences of methylation patterns in various
regions of the SNAI2 gene, its distal promoter and the 3′UTR were both hypomethylated in
hgOvCa compared to lgOvCa (GR file).

As to the DMRs identified in the present study, all the ten most significant ones,
discriminating BOT from lgOvCa, encompassed the MHC region on chromosome 6. The
concentration of DMRs within a relatively short fragment of the same chromosome may
imply that all these DMRs are located within a single chromatin domain. Such domains
were previously shown to be regulated in a coordinated manner in the process of carcino-
genesis [60]. The aforementioned region on chromosome 6, comprising approximately
3.5 million bp, is densely packed with immunologically important genes [61]. To date,
no studies on this region are available in the literature for BOTS and lgOvCa alike. Still,
based on our results, we may assume that the immune system, and possibly also other
components of tumor microenvironment, may play a pivotal role in the transition from
BOTS to lgOvCa. Yet, to shed more light on this complex process, further in-depth research
is necessary.

In BOTS, one of the genes overlapped by DMRs with good discriminative capacities
was BAIAP3. This TP53-dependent gene encodes a brain-specific angiogenesis inhibitor,
involved in the endosome to Golgi retrograde transport [40]. Although there are no data
on its role in ovarian tumors, its oncogenic meaning was demonstrated in desmoplastic
small-round-cell tumor, an aggressive and rare cancer, in which the ectopic expression
of BAIAP3 dramatically enhanced growth and colony formation in vitro [62]. Our results
seem to support that outcome, as we observed hypomethylation of the BAIAP3 distal
promoter and 5′UTR/first exon in hgOvCa compared to BOT and BOT.V600E alike (GR
file). Still, if only borderline tumors were considered, high methylation of a one-CpG DMR,
located in a BAIAP3 intron, increased the risk of microinvasion/non-invasive implants in
our regression analyses.

By contrast, hypermethylation of two DMRs encompassing the IL34 gene turned out
to be a favorable predictor, herein, decreasing the risk of microinvasion/non-invasive
implants, which implies an oncogenic role of IL34 in BOTS. In accordance, the literature
portrays IL34 as a cancer-promoting interleukin in OvCa, inducing the formation of tumor-
associated macrophages (TAM), being the important part of a tumor microenvironment [63].

As for DMRs of potential use as predictors in hgOvCa, one of them encompassed
the HMOX1 (HO-1) gene. This gene encodes an essential enzyme in heme catabolism [40]
and is considered an oncogene, highly expressed in gynecological malignancies, including
ovarian, cervical, and endometrial cancers. HO-1 is involved in cell proliferation, metastasis,
immune regulation and angiogenesis [64]. Consistently, our regression analyses also
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contribute to the oncogenic role of HMOX1, showing that the elevated methylation level
within the discussed DMR was associated with the lower risk of death in patients with
tumors harboring the TP53 protein accumulation.

Two other genes, TCN2, and PES1, were overlapped by three DMRs discovered
in the present study. If hypermethylated, all these DMRs emerged as markers of good
prognosis in patients suffering from hgOvCa with TP53 accumulation who underwent
the TP therapy. Thus, based on our results, TCN2 and PES1 might both be regarded as
oncogenes. Considering the literature data, the elevated level of TCN2, a co-factor taking
part in the kobalamin (vitamin B12) transport [40], was associated with the increased
risk of thyroid cancer development [65], which supports the outcome obtained in the
present study. Similarly, the high expression of the PES1 gene, encoding a nucleolar protein
involved in ribosome biogenesis and DNA replication, was shown to be related to tumor
cell proliferation, invasion, and metastasis in multiple types of cancer, including ovarian
cancer [66,67], which is concordant with our results, too.

The last gene to be discussed, ABR, coding for the protein having the GTPase-activating
and the guanine exchange factor (GEF) domains [40], is overlapped by a DMR, hyperme-
thylation of which was demonstrated here as a favorable factor increasing the chance of CR
in the entire set of hgOvCa specimens. Thus, the gene in questions appears to be an onco-
gene in ovarian carcinomas. Our analysis of methylation changes in various functionally
annotated gene regions (GR file) constitutes another confirmation of the likely pathogenic
role of ABR in ovarian tumors, unveiling its hypomethylation in hgOvCa compared to less
aggressive tumors in all regions except for 3′UTRs. Conversely, other researchers reported
the putative tumor suppressive role of ABR in both solid tumors, such as medulloblastoma,
astrocytoma, and breast cancer, and in acute myeloid leukemia, too [68]. Remarkably,
none of those research were carried out on OvCa, which may explain why their results are
inconsistent with ours.

5. Limitations of the Study

One of the limitations of our study originates from the fact that we analyzed bulk
tumor samples being just a part of the entire tumor microenvironment, the complexity
and heterogeneity of which might not have been fully captured due to the constraints
of the experimental setup applied herein. Secondly, our research was performed on the
retrospective (not prospective) cohort of patients, collected for 20 years, meticulously
followed up, and carefully checked for compatibility of all clinicopathological parameters.
This approach, though widely used, could introduce some hardly definable biases and
limit the ability to control for potential confounding factors. Finally, due to the relatively
poor quality of DNA isolated from formalin-fixed, paraffin-embedded (FFPE) blocks, we
were forced to discard some hybridization probes (and also the corresponding CpG sites)
to guarantee the reliability of the methylome profiling results. Approximately 69% of
the probes passed all the filtering steps described in the Methods section. Thus, some
potentially important methylation differences may have been missed in the present study.

6. Conclusions

Herein, the global genome-wide hypomethylation positively correlated with the in-
creasing aggressiveness of ovarian tumors, being the strongest in hgOvCa. Based on our
results, we may also assume that the immune system, and likely other components of tumor
microenvironment too, possibly play a pivotal role in the transition from BOTS to lgOvCa.
Interestingly, the BOT.V600E tumors had the lowest number of differentially methylated
CpGs and DMRs compared to all other groups. Thus, when methylome is considered, such
tumors might be placed in-between BOT and OvCa. Moreover, we identified hundreds of
DMRs in the genome, being of potential use as predictive biomarkers in BOTS and hgOvCa.
Therefore, our research not only forms a groundwork for future studies on ovarian tumor
methylome but also, by identifying potential biomarkers, might facilitate the fight against
this group of diseases and conceivably improve their outcome.
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1. Introduction
Although progress has been made in developing new therapies and deepening the

biological understanding of ovarian carcinoma (OvCa), it continues to be the most lethal
gynecologic cancer in women. According to estimates from the American Cancer Society,
approximately 20,890 new cases and 12,730 deaths from ovarian cancer are expected in the
United States in 2025 [1]. Mortality rates are even higher in countries with limited cancer
prevention, screening, and diagnostic programs. The poor prognosis of OvCa is largely
due to the challenges of detecting the disease at an early, more treatable stage.

Ovarian carcinomas are classified into two major subtypes: high-grade (hgOvCa) and
low-grade (lgOvCa). High-grade tumors are the predominant form and are marked by
extensive genomic instability, chromosomal alterations, and frequent mutations in tumor
suppressor genes such as TP53, BRCA1, and BRCA2 [2]. In contrast, low-grade tumors
are rare, typically diagnosed at a younger age, show relative resistance to chemotherapy,
and are associated with longer survival. Unlike high-grade tumors, lgOvCa seldom harbor
TP53 or BRCA1/2 mutations [3,4] and, particularly in the serous subtype, share molecular
similarities with borderline ovarian tumors (BOTs) [5].

BOTs are uncommon tumors with low malignant potential, showing an intermediate
characteristics between benign and invasive ovarian cancers. They generally arise in
women of reproductive age, are diagnosed at early FIGO stages, and carry favorable
survival rates. Preoperative imaging methods (ultrasound, MRI) aid in distinguishing
BOTs from carcinomas, but definitive diagnosis requires histopathology. Surgical resection
remains the primary treatment, with fertility-sparing approaches considered for younger
patients desiring pregnancy. Chemotherapy, however, is not recommended [6,7]. Even
after complete resection, about 20% of BOTs may recur—most as borderline tumors but, in
some cases, as low-grade carcinomas [5,8–10].

While biomarkers in BOTs are poorly characterized, OvCa—particularly hgOvCa—has
been extensively studied. Nonetheless, uncertainties persist regarding the clinical utility of
some molecular markers. Thus, identifying reliable prognostic and predictive biomarkers
remains critical for improving treatment outcomes and reducing OvCa-related mortality.

2. Ovarian Cancer Risk Factors
The most significant risk factors are inherited mutations in the BRCA1 and BRCA2

genes, which increase OvCa risk significantly, and have a strong influence on patient
survival. Thus, such genetic alterations are considered a valuable stratification factor [11].
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Consistently, mutations in other genes involved in homologous recombination repair, such
as RAD51C/D and BRIP1, also elevate OvCa risk [12]. The higher OvCa risk is also observed
in women, who have never been pregnant or have had fewer full-term pregnancies, likely
due to uninterrupted (incessant) ovulation and hormonal exposure [13]. Early menarche
and late menopause extend the number of ovulatory cycles, thus also raising OvCa risk [14].
Conversely, the use of combined oral contraceptives has been shown to reduce ovarian
cancer risk, with longer use correlating with greater protection [15].

It is noteworthy that OvCa risk increases with aging and peaks between the ages of
50 and 80 years [16]. However, lifestyle factors, like inappropriate diet leading to obesity,
may increase the risk of developing ovarian tumors. Obesity is associated with chronic
inflammation and increased estrogen levels, which may promote tumor development.
Moreover, some studies demonstrate that up to 40% of obese patients with ovarian cancer
receive suboptimal doses of chemotherapy, which are not proportional to actual body
weight, and such reduced dosage of chemotherapeutic agents may compromise progression-
free survival (PFS) and overall survival (OS) [17].

Endometriosis and pelvic inflammatory disease are also linked to elevated ovarian
cancer risk, however, some studies suggest that the cumulative incidence rate of ovarian
cancer is significantly higher in patients with endometriosis than in those with pelvic
inflammatory disease [18].

3. Prevention
Women with mutations in BRCA1/2 are advised to undergo regular screening, in-

cluding transvaginal ultrasound and CA-125 blood tests, although the effectiveness of
screening alone is limited. Prophylactic removal of ovaries and fallopian tubes is currently
the most effective preventive measure, significantly reducing the risk of ovarian cancer in
BRCA1/2-mutation carriers [19].

Asymptomatic progression of OvCa underscores the urgent need for sensitive, min-
imally invasive diagnostic tools. One promising approach in recent years has been the
use of circulating tumor DNA (ctDNA) as a biomarker for early cancer detection. ctDNA
originates from fragments of DNA released by tumor cells into the bloodstream (and also
to saliva, urine or cerebrospinal fluid). These fragments carry tumor-specific genetic muta-
tions and epigenetic changes, providing a window into tumor biology through a simple
blood draw—often termed a “liquid biopsy” [20]. Elevated ctDNA levels in OvCa patients
correlate with poorer progression-free and overall survival [21]. Unlike traditional imaging
techniques and CA-125 measurements, ctDNA enables real-time monitoring, detection of
minimal residual disease, and earlier relapse identification. It was shown that after surgery
the presence of ctDNA was a strong predictor of relapse (hazard ratio ~17.6), outperforming
CA-125 [22]. Thus, while ctDNA-based screening for OvCa has neither been widely used
in clinical practice nor approved by the American Food and Drug Administration (FDA)
yet, it holds great promise for the diagnosis and recurrence monitoring of this neoplasm.

4. Diagnosis
The methods for ovarian cancer diagnosis include, e.g., the OVA1 test, which involves

the assessment of five serum biomarkers—CA-125, tranthyretin, apolipoprotein A1, beta-2
microglobulin, and transferrin—into a single numerical score that reflects the malignant
risk. OVA1 can detect malignancies (including early-stage ovarian cancers) that might be
overlooked when evaluating CA-125 levels only [23]. Admittedly, the current guidelines
from the Society of Gynecologic Oncology (SGO) do not recommend OVA1 as a standalone
diagnostic or screening test for assessing adnexal masses preoperatively. Still, the SGO
endorses OVA1 as an auxiliary tool in OvCa diagnosis [24].
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5. Chemotherapy
Despite using the standard systemic chemotherapy for OvCa (typically a combination

of platinum agents (like cisplatin or carboplatin) and taxanes (paclitaxel)), there has been
growing interest in hyperthermic intraperitoneal chemotherapy (HIPEC). HIPEC involves
perfusing the peritoneal cavity with heated chemotherapy immediately after cytoreductive
surgery, aiming to eradicate microscopic residual disease. Hyperthermia enhances drug
penetration and synergizes with platinum agents and taxanes, while limiting systemic
toxicity. Additionally, hyperthermia has been shown to reduce the mechanisms of induced
cellular resistance to cisplatin [25].

6. Targeted Therapy
Targeted therapies have become essential additions to standard platinum-taxane

chemotherapy in the treatment of ovarian cancer. Among the most widely used are
anti-angiogenic agents, Poly (ADP-Ribose) Polymerase (PARP) inhibitors or immune check-
point inhibitors. Bevacizumab, a monoclonal antibody targeting VEGF-A, which inhibits
angiogenesis, has demonstrated clinical usability in OvCa. The GOG-0218 and ICON7
clinical trials showed a significant PFS benefit when bevacizumab was added to standard
chemotherapy [26].

Another monoclonal antibody, pembrolizumab, is an immune checkpoint inhibitor (it
blocks the PD-1 receptor), which has been explored in platinum-resistant ovarian cancer.
While the activity of pembrolizumab as a single-agent is modest, its combinations with
bevacizumab and low-dose cyclophosphamide demonstrated clinical benefits in 25% of
patients with recurrent OvCa [27].

PARP inhibitors (PARPi) exploit defects in DNA repair mechanisms, particularly in
BRCA1/2-mutated and homologous recombination repair-deficient (HRD) tumors. Cur-
rently, four PARPi, olaparib, rucaparib, talazoparib and niraparib, are approved by regula-
tory agencies for the treatment of multiple tumor types including OvCa [28]. In patients
with germline or somatic BRCA1/2 mutations (which were deleterious or suspected to be
deleterious), the olaparib monotherapy (SOLO1 trial) resulted in a three-year PFS benefit
(HR, 0.30; 95% CI 0.23–0.41). On the other hand, the niraparib monotherapy in the PRIMA
trial (which enrolled patients regardless of their BRCA1/2 mutation status) demonstrated a
median PFS benefit (HR, 0.40; 95% CI 0.27–0.62) [29].

7. Invitation for Paper Contribution
Given the considerations presented in this editorial, discovering novel molecular

biomarkers that reflect qualitative or quantitative changes in the genomes, methylomes,
transcriptomes, proteomes, or metabolomes of BOTs and OvCas is crucial in advancing
the fight against these tumors. We hope that the findings shared in this Special Issue will
lay the foundation for innovative, more effective, and less burdensome approaches to the
detection, diagnosis, and treatment of ovarian neoplasms.

In order to make this Special Issue even more scientifically sound and interesting for
the broader group of scientists, both clinicians and basic researchers, we would like to
invite You to contribute a manuscript to this international endeavor (to date, six valuable
research articles written by scientists from Japan, USA, Russia, Denmark, Switzerland, and
Poland have been published). It is worth noting that both original and review articles are
gladly welcome. If You wish to participate in this Special Issue by supporting it with Your
knowledge and study results, we truly solicit Your involvement and warmly encourage
You to submit Your manuscript by the deadline, i.e., 20 December 2025. We hope that this
issue is likely to achieve another major goal, being its publication as a digital book available
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online, and that the precious contribution of You and all the other scientists involved will
help us meet book-publishing requirements.

Author Contributions: Conceptualization: L.A.S., J.K., and L.M.S.; Supervision: L.M.S.; Writing—Original
Draft: L.A.S. and L.M.S.; Writing—Review and Editing: J.K. All authors have read and agreed to the
published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.
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14. Pięta, B.; Chmaj-Wierzchowska, K.; Opala, T. Past Obstetric History and Risk of Ovarian Cancer. Ann. Agric. Environ. Med. 2012,
19, 385–388.

15. Arshadi, M.; Hesari, E.; Ahmadinezhad, M.; Yekta, E.M.; Ebrahimi, F.; Azizi, H.; Esfarjani, S.V.; Rostami, M.; Khodamoradi, F. The
Association between Oral Contraceptive Pills and Ovarian Cancer Risk: A Systematic Review and Meta-Analysis. Bull. Cancer
2024, 111, 918–929. [CrossRef] [PubMed]

16. Zheng, G.; Yu, H.; Kanerva, A.; Försti, A.; Sundquist, K.; Hemminki, K. Familial Risks of Ovarian Cancer by Age at Diagnosis,
Proband Type and Histology. PLoS ONE 2018, 13, e0205000. [CrossRef] [PubMed]

17. Benedetto, C.; Salvagno, F.; Canuto, E.M.; Gennarelli, G. Obesity and Female Malignancies. Best Pract. Res. Clin. Obstet. Gynaecol.
2015, 29, 528–540. [CrossRef]

18. Huang, J.-Y.; Yang, S.-F.; Wu, P.-J.; Wang, C.-H.; Tang, C.-H.; Wang, P.-H. Different Influences of Endometriosis and Pelvic
Inflammatory Disease on the Occurrence of Ovarian Cancer. Int. J. Environ. Res. Public Health 2021, 18, 8754. [CrossRef]

19. Gadducci, A.; Sergiampietri, C.; Tana, R. Alternatives to Risk-Reducing Surgery for Ovarian Cancer. Ann. Oncol. 2013, 24,
viii47–viii53. [CrossRef]



Int. J. Mol. Sci. 2025, 26, 9071 5 of 5

20. Golara, A.; Kozłowski, M.; Cymbaluk-Płoska, A. The Role of Circulating Tumor DNA in Ovarian Cancer. Cancers 2024, 16, 3117.
[CrossRef]

21. Taliento, C.; Morciano, G.; Nero, C.; Froyman, W.; Vizzielli, G.; Pavone, M.; Salvioli, S.; Tormen, M.; Fiorica, F.; Scutiero, G.; et al.
Circulating Tumor DNA as a Biomarker for Predicting Progression-Free Survival and Overall Survival in Patients with Epithelial
Ovarian Cancer: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Cancer 2024, 34, 906–918. [CrossRef]

22. Hou, J.Y.; Chapman, J.S.; Kalashnikova, E.; Pierson, W.; Smith-McCune, K.; Pineda, G.; Vattakalam, R.M.; Ross, A.; Mills, M.;
Suarez, C.J.; et al. Circulating Tumor DNA Monitoring for Early Recurrence Detection in Epithelial Ovarian Cancer. Gynecol.
Oncol. 2022, 167, 334–341. [CrossRef] [PubMed]

23. Dunton, C.J.; Hutchcraft, M.L.; Bullock, R.G.; Northrop, L.E.; Ueland, F.R. Salvaging Detection of Early-Stage Ovarian Malignan-
cies When CA125 Is Not Informative. Diagnostics 2021, 11, 1440. [CrossRef]

24. SGO Position Statement: OVA-1. Society of Gynecologic Oncology. Available online: https://www.sgo.org/news/sgo-position-
statement-ova-1/ (accessed on 10 August 2025).

25. Riggs, M.J.; Pandalai, P.K.; Kim, J.; Dietrich, C.S. Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer. Diagnostics
2020, 10, 43. [CrossRef]

26. Babaier, A.; Ghatage, P. Among Patients with Advanced Ovarian Carcinoma, Who Benefits from Bevacizumab the Most? Ann.
Transl. Med. 2023, 11, 367. [CrossRef]

27. Zsiros, E.; Lynam, S.; Attwood, K.M.; Wang, C.; Chilakapati, S.; Gomez, E.C.; Liu, S.; Akers, S.; Lele, S.; Frederick, P.J.; et al.
Efficacy and Safety of Pembrolizumab in Combination With Bevacizumab and Oral Metronomic Cyclophosphamide in the
Treatment of Recurrent Ovarian Cancer: A Phase 2 Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, 78–85. [CrossRef]
[PubMed]

28. Herzog, T.J.; Vergote, I.; Gomella, L.G.; Milenkova, T.; French, T.; Tonikian, R.; Poehlein, C.; Hussain, M. Testing for Homologous
Recombination Repair or Homologous Recombination Deficiency for Poly (ADP-Ribose) Polymerase Inhibitors: A Current
Perspective. Eur. J. Cancer 2023, 179, 136–146. [CrossRef] [PubMed]

29. Kim, J.H.; Kim, S.I.; Park, E.Y.; Kim, E.T.; Kim, H.; Kim, S.; Park, S.-Y.; Lim, M.C. Comparison of Survival Outcomes between
Olaparib and Niraparib Maintenance Therapy in BRCA-Mutated, Newly Diagnosed Advanced Ovarian Cancer. Gynecol. Oncol.
2024, 181, 33–39. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.
























