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Abstract in Polish 

=ELyU�DUW\NXáyZ�VWDQRZL�F\�SRGVWDZ
�QLQLHMV]HM�UR]SUDZ\�GRNWRUVNLHM�VNáDGD�VL
�]�WU]HFK�

publikacji: Pawlak et al. Ä'\QDPLFV� RI� FDUGLRP\RF\WH� WUDQVFULSWRPH� DQG� FKURPDWLQ�

ODQGVFDSH�GHPDUFDWHV�NH\�HYHQWV�RI�KHDUW�GHYHORSPHQW´��Genome Res.��������0LJGDá�HW�

DO��Ä0XOWL-omics analyses of early liver injury reveals cell-type-specific transcriptional 

DQG�HSLJHQRPLF�VKLIW´��BMC Genomics��������RUD]�0LJGDá�HW�DO��Ä[FRUH��DQ�5�SDFNDJH�

IRU�LQIHUHQFH�RI�JHQH�H[SUHVVLRQ�UHJXODWRUV´��BMC Bioinformatics, 2022. &HOHP�SUDF�E\áR�

SR]QDQLH� PHFKDQL]PX� UHJXODFML� WUDQVNU\SFML� JHQyZ�� Z� V]F]HJyOQR�FL� LGHQW\ILNDFMD�

F]\QQLNyZ�WUDQVNU\SF\MQ\FK��7)��L�HOHPHQWyZ�UHJXODWRURZ\FK�'1$��5(��EXGXM�F\FK�

XNáDG\� NRQWUROL� WUDQVNU\SFML� JHQyZ� OH*�FH� X� SRGVWDZ� Uy*QRURGQ\FK� SURFHVyZ�

NRPyUNRZ\FK�� :� W\P� FHOX�� Z\NRU]\VWDáHP� GDQH� HNVSHU\PHQWDOQH� X]\VNDQH� PHWRG��

sHNZHQFMRQRZDQLD�QDVW
SQHM�JHQHUDFML�]�RUJDQL]PyZ�QD Uy*Q\FK�SR]LRPDFK�]áR*RQR�FL�

biologicznej, w tym in vivo ]� 'DQLR� SU
JRZDQHJR� �Danio rerio) oraz in vitro  

z XQLH�PLHUWHOQLRQ\FK� OLQLL� NRPyUNRZ\FK� F]áRZLHND�� 'R� SU]HWZDU]DQLD� ]HEUDQ\FK�

GDQ\FK� Z\NRU]\VWDáHP SXEOLF]QLH� GRVW
SQH� RUD]� RSUDFRZDQH� SU]H]H� PQLH� QDU]
G]LD�

ELRLQIRUPDW\F]QH� VáX*�FH� GR�� SU]HWZDU]DQLD� VXURZ\FK� GDQ\FK� JHQRPLF]Q\FK�� DQDOL]\�

Z]ERJDFH��PRW\ZyZ�7)�F]\�XF]HQLD�PDV]\QRZHJR�]�]DVWRVRZDQLHP�SHQDOL]RZDQ\FK�

PRGHOL� OLQLRZ\FK�� *áyZQ\P� ]DáR*HQLHP� SUDF\� MHVW� ]ZL�]HN� SU]\F]\QRZR-skutkowy 

SRPL
G]\� 7)�� 5(� D� WUDQVNU\SFM�� NRQWURORZDQ\FK� SU]H]� QLH� JHQyZ�� %D]XM�F� QD�

SRZ\*V]\P� ]DáR*HQLX� Z\EUDQH� SUDFH� EDGDM�� PHFKDQL]P� UHJXODFML� WUDQVNU\SFML�

Z\NRU]\VWXM�F�LQIRUPDFMH�R�SR]LRPDFK�HNVSUHVML�JHQyZ�L�DNW\ZQR�FL�5(�� 

5R]G]LDá� ³,QWURGXFWLRQ´� ]DZLHUD� NUyWNLH� ZSURZDG]HQLH� ]� ]DNUHVX� UHJXODFML�

HNVSUHVML� JHQyZ� RUD]� VWRVRZDQ\FK� SU]H]H� PQLH� PHWRG� ELRLQIRUPDW\F]Q\FK�

wykorzystywanych do DQDOL]\�GDQ\FK�JHQRPLF]Q\FK��=DZDUWH�Z�QLP�WU]\�SRGUR]G]LDá\�

VWUHV]F]DM��Z\EUDQH�SUDFH�QDXNRZH��]�SRGNUH�OHQLHP�ZVSyOQHJR�WHPDWX�SU]HZRGQLHJR�

UHJXODFML� WUDQVNU\SFML� RUD]� Uy*QLF� Z� Z\NRU]\VW\ZDQ\FK� PHWRGDFK� DQDOL]\� GDQ\FK��

.ROHMQH� WU]\� UR]G]LDá\� ]DZLHUDM�� NRSLH� Z\EUDQ\FK� DUW\NXáyZ� RSXEOLNRZDQ\FK� 

Z� F]DVRSLVPDFK� QDXNRZ\FK�� 5R]SUDZD� NR�F]\� VL
� UR]G]LDáHP� Ä6XPPDU\� DQG�

FRQFOXVLRQV´�� NWyU\� SRGVXPRZXMH� X]\VNDQH� Z\QLNL�� 2�ZLDGF]HQLD� ZVSyáDXWRUyZ�

GRW\F]�FH�ND*GHM�SXEOLNDFML�]QDMGXM��VL
�QD�NR�FX�UR]SUDZ\�GRNWRUVNLHM�  
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Abstract in English 

The presented collection of articles providing the basis for this doctoral 

GLVVHUWDWLRQ�FRQVLVWV�RI� WKUHH�SXEOLFDWLRQV��3DZODN�HW� DO�� Ä'\QDPLFV�RI� FDUGLRP\RF\WH�

WUDQVFULSWRPH�DQG�FKURPDWLQ� ODQGVFDSH�GHPDUFDWHV�NH\�HYHQWV�RI�KHDUW�GHYHORSPHQW´��

Genome Res., ������0LJGDá�HW�DO��Ä0XOWL-omics analyses of early liver injury reveals cell-

type-VSHFLILF�WUDQVFULSWLRQDO�DQG�HSLJHQRPLF�VKLIW´��BMC Genomics��������DQG�0LJGDá�HW�

DO�� Ä[FRUH�� DQ� 5� SDFNDJH� IRU� LQIHUHQFH� RI� JHQH� H[SUHVVLRQ� UHJXODWRUV´�� BMC 

Bioinformatics, 2023. The selected publications aimed to elucidate the principles of gene 

regulation, emphasizing on the identification of transcription factors (TFs) and DNA 

regulatory elements (REs) which constitute gene regulatory networks underlying various 

cellular processes. To achieve this principal aim, we utilized next-generation sequencing 

(NGS) data collected from organisms at various levels of biological complexity, including 

in vivo data from zebrafish (Danio rerio) and in vitro human cell lines. These were 

analyzed using either established bioinformatic algorithms or those which I developed, 

including NGS data processing, motif enrichment analysis, and machine learning using 

penalized linear models. The key assumption of the work is the causal relationship 

between TF, RE, and the transcriptional outcome of their target genes. Based on this 

assumption, the analytical frameworks exemplified in this collection of articles 

approaches the problem of transcriptional regulation mechanism using information on 

gene expression and the activity of RE. 

7KH� ³,QWURGXFWLRQ´� FKDSWHU� SURYLGHV� D� EULHI� LQWURGXFWLRQ� WR� WKH� WRSLF� RI� JHQH�

regulation and the approaches I used in the bioinformatic analysis of the experimental 

data obtained from experiments employing NGS. Its three subsections give an overview 

of the included articles, emphasizing on the common gene regulation theme of these 

studies and the differences in the employed analytical methodologies. The following three 

chapters contain the copies of the included articles; the associated supplementary 

materials can be accessed in their on-line forms. Finally, the dissertation is concluded 

ZLWK�D�³6XPPDU\�DQG�FRQFOXVLRQV´�FKDSWHU��7KH�FR-authors contribution statements for 

each publication can be found attached following the last chapter.  
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Introduction 

Multicellular organisms are made up of many types of cells with specialized 

morphology and function. These cells constitute various organ systems which perform 

FULWLFDO�IXQFWLRQV�IRU�WKH�RUJDQLVP¶V�VXUYLYDO��7KH�LGHQWLW\�RI�D�FHOO�Ls mostly dictated by 

WKH�FHOO¶V�VSHFLILF�SURWHLQ�FRPSRVLWLRQ��$OO�WKH�SURWHLQV�WKDW�D�FHOO�FDQ�SURGXFH�DUH�HQFRGHG�

by the genes in the DNA (deoxyribonucleic acid). However, the DNA is not a direct 

template for protein synthesis. Instead, genes are first transcribed into ribonucleic acid 

(RNA) in a process called transcription. Next, instructions written in the RNA are used 

to synthesize proteins in the process of translation. This flow of genetic information, from 

DNA through RNA to protein, is called gene expression and constitutes the central dogma 

of molecular biology (Crick 1970). Remarkably, all cells in an organism carry an identical 

copy of the DNA, and yet cells can take a variety of different states. This is achieved 

thanks to the regulation of gene expression: while all cells carry the complete set of 

genetic information, not all of that information is actively expressed. Cells of different 

types express different sets of genes which underlie their different characteristics (Alberts 

et al. 2002). The dynamic character of gene expression does not only differentiate cell 

types; gene expression of a particular cell changes during its development, cell cycle or 

in response to external stimuli such as toxic chemicals. 

The dynamic usage of genetic information is achieved through gene expression 

regulation. In eukaryotic cells, gene expression regulation can occur at multiple levels 

throughout the gene expression process. Three of the most recognized modes of 

regulation are: transcriptional regulation, post-transcriptional modifications and 

translational regulation (Stryer et al. 2018). The three publications included in this 

dissertation focus solely on the first layer of gene regulation - transcriptional regulation - 

which is thought to play a fundamental role in establishing cell type diversity. 

Transcriptional regulation is implemented by means of a complex system of interactions 

between TFs and REs. TFs are a class of proteins that participate in the assembly and 

regulation of the basal transcriptional machinery. Crucial to their function is their ability 

to bind DNA in a sequence specific manner (Latchman 1997). TFs commonly exert their 

regulatory role through binding with cofactors that contribute to transcription regulation. 

A well-known example is the Mediator complex which binds TFs to stimulate or repress 

the phosphorylation of polymerase II, effectively facilitating transcription initiation 

(Cramer 2019). REs contain regulatory signals encoded in the DNA sequence, together 

with genes, in cis. They serve as binding sites for TFs which bind to those sites by 
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recognizing specific DNA sequences. The TF binding specificity has been shown to be 

evolutionary conserved between distantly related organisms, such as insects and 

mammals (Nitta et al. 2015). Promoters and enhancers are the two classes of REs that 

play essential roles in gene transcription (Alberts et al. 2002). Promoters are defined as 

the DNA sequence located directly upstream of the transcription start site. They contain 

the signals necessary to stimulate the transcription initiation complex assembly as well as 

the binding sites for regulatory TFs (Cramer 2019). Enhancers are traditionally defined 

as sequences able to enhance gene transcription and are not restricted by the distance from 

the target gene they regulate. They are brought into close proximity to the promoter of 

their target genes through DNA looping and participate in gene expression regulation by 

providing binding sites to TFs that can upregulate or downregulate target gene 

transcription (Pennacchio et al. 2013). Each gene has its promoter and associated 

enhancers that provide binding sites for the TFs. In this way RE sequence defines which 

7)V�FDQ�SDUWLFLSDWH�LQ�WKH�UHJXODWLRQ�RI�D�JLYHQ�JHQH¶V�H[SUHVVLRQ�� 

Transcriptional regulation is further fine-tuned by the dynamic character of 

chromatin accessibility and TF activity, which provides the mechanism for spatio-

temporal gene expression outcome. Chromatin accessibility expresses a physical property 

of DNA structure that defines whether a particular DNA region is accessible to proteins, 

such as TFs. In a simplified picture, we can consider the DNA as organized into regions 

of differing accessibility. Of particular significance is the accessibility of DNA regions 

harboring REs as they actively participate in gene regulation (ENCODE Project 

Consortium 2012). Chromatin accessibility is determined by many reversible processes, 

such as histone modification and DNA methylation (Klemm, Shipony, and Greenleaf 

2019). By regulating the accessibility of specific REs cells can regulate their gene 

expression in a complex manner. Additionally, transcription is modulated by TF activity, 

which expresses the character and strength of TF effect on the genes they regulate. TF 

activity stems not only from the intrinsic properties of the particular TF, but also from 

other factors such as TF abundance. 

The concept of transcriptional control was first established over 60 years ago 

(Jacob and Monod 1961). The large number of cellular, molecular, and structural studies 

conducted since then established a detailed knowledge on the factors involved in the 

process of transcription and their structural organization, providing mechanistic insights 

into gene transcription regulation (Cramer 2019). The complex interplay between these 

factors allow flexible use of genetic information. For instance, it allows cells to 

differentiate into a variety of specialized cell types such as cardiomyocytes or liver 
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sinusoidal endothelial cells (LSEC). Cardiomyocytes are one of the heart's main building 

blocks playing a fundamental role in heart contraction. Their cellular structure highly 

underlines their functional properties, which can be seen in the presence of Ca2+ storing 

sarcoplasmic reticulum and contractile apparatus composed of sarcomeres driving their 

contraction, leading to beating of the heart. The key determinants of the cardiomyocytes 

expression program are the NKX2-5, GATA4, and TBX5 transcription factors (Lyons et 

al. 1995; Durocher et al. 1997; Bruneau et al. 2001). On the other hand, LSECs constitute 

WKH� ZDOOV� RI� WKH� OLYHU¶V� VLQXVRLGDO� EORRG� YHVVHOV� DQG� SURYLGH� WKH� LQWHUface between 

hepatocytes or hepatic stellate cells and the blood vessel lumen. They are characterized 

by a lack of basement membrane and the presence of a permeable fenestrae facilitating 

their role as a selective barrier (De Leeuw, Brouwer, and Knook 1990). At the regulatory 

level, a combination of TFs is involved in establishing LSEC identity, such as GATA4, 

C-MAF or TCFEC (de Haan et al. 2020). The commonly accepted view is that 

transcriptional regulation through combinatorial TF binding, is the key mechanism 

underlying the specification of cell identity in eukaryotes (Takahashi and Yamanaka 

2006). While the main drivers of many cell expression programs are known, establishing 

the complete knowledge on the TFs and REs underlying gene regulatory networks at play 

in various cellular processes is still an open challenge. The works presented in this 

doctoral dissertation attempts to address this problem using computational analysis of 

transcriptome and epigenome data in different biological contexts, and further develop a 

computational framework for predictive modeling of TF regulatory activity. 

Dynamics of cardiomyocyte transcriptome and chromatin landscape 

demarcates key events of heart development (Pawlak et al., 2019) 

The first work included in this collection of articles, (Pawlak et al. 2019) aims to 

elucidate the gene regulatory network underlying heart development using Danio rerio 

as a model organism. The principal design of the study involved the characterization of 

the transcriptome and epigenome landscape at the early stages of heart formation, 

focusing on the identification of putative TFs associated with the observed variability in 

gene expression. To this end, the study produced assay for transposase-accessible 

chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-

seq) data from a population of cardiomyocytes obtained by fluorescence-activated cell 

sorting (FACS). To interpret the gene expression dynamics, the expression information 

collected at different time points and from wild-type and mutant conditions were 
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subjected to clustering analysis. Cluster analysis refers to a broad variety of techniques 

aiming at detecting subgroups of similar objects, or clusters, in the dataset. They define a 

similarity measure, such as Euclidean distance, which can be used to measure the 

distances between various data points (reviewed in James et al. 2021). In the case of gene 

regulation studies, clustering analysis is applied to identify groups of co-expressed genes 

based on gene expression data across different conditions or time points in a given 

biological process (eg. cell cycle, organ development). Co-expressed genes are defined 

as genes sharing expression patterns across these points. Such groups of genes suggest 

functional significance as they likely represent interconnected genes involved in common 

biological processes. In (Pawlak et al. 2019) we have identified several clusters of co-

exSUHVVHG� JHQHV� HQULFKHG� LQ� JHQHV� DVVRFLDWHG� ZLWK� WKH� ³KHDUW� GHYHORSPHQW´� *HQH�

Ontology term. These clusters included the genes gata5 and nkx2.5 which encode for TFs 

implicated in the specification of cardiac cell identity (Reiter et al. 1999, 5; Lyons et al. 

1995; Durocher et al. 1997). Since gene expression is controlled by its REs, it is 

reasonable to expect that co-expressed genes share their underlying regulatory grammar 

in the form of a combination of active TF binding events. This notion is strongly 

supported by numerous observations �$OORFFR��.RKDQH��DQG�%XWWH�������%U�]PD�HW�DO��

1998), and recently demonstrated in simulations using synthetic gene regulatory networks 

(Yin et al. 2021). TFs interact with DNA sequences by binding to short subsequences 

which in vertebrates are usually between 10-14 nucleotides long. The sequences 

recognized by TFs can be generalized and represented in the form of a motif. One of the 

simplest motif representations is the position weight matrix (PWM) that describes TF 

binding preferences by giving the likelihood of a particular nucleotide occurring at each 

position in the sequence (reviewed in Rzeszowska-Wolny and Jaksik 2010). These motifs 

can also be used to predict putative TF binding sites in the whole genome of an organism 

by scanning for genome subsequences that are similar enough with the motif. However, 

TF motifs do not provide enough information to accurately predict true transcription 

factor binding sites (TFBS) in-vivo, resulting in high false positives rates. Motif 

enrichment analysis aims to overcome this drawback by looking for motifs shared by a 

group of co-expressed genes in order to identify TFs with a putative regulatory role. A 

common approach is to perform motif enrichment analysis on a group of co-expressed 

genes discovered using cluster analysis (Frith et al. 2004). In (Pawlak et al. 2019), I used 

the corresponding ATAC-seq data to identify accessible REs within the promoters of co-

expressed genes. To identify active REs, I implemented a bioinformatic pipeline which 

takes the raw sequencing reads to infer the genomic locations of accessible chromatin 
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regions. Such regions are commonly associated with different transcription related 

activities, such as active promoters and enhancers. Using the motif enrichment analysis 

tool HOMER (Heinz et al. 2010), I complemented the obtained co-expression gene 

clusters with TF motifs found to be enriched in the identified promoter-proximal open 

chromatin regions of co-expressed genes. Together, co-expression clusters and their motif 

description illustrate the dynamics of cardiomyocytes transcriptomic and gene regulatory 

landscape. Our results suggest a major transcriptomic and epigenomic shift towards more 

cell type specific expression patterns between linear heart tube formation (24 hpf) and 

heart looping (48 hpf). Analysis of data collected using gata5, hand2, and tbx5 mutants, 

in which heart development is affected, revealed only minor changes in the identified 

promoter-proximal REs, suggesting the predominant role of distal regulatory elements in 

cardiomyocytes maturation. 

Multi-omics analyses of early liver injury reveals cell-type-specific 

WUDQVFULSWLRQDO�DQG�HSLJHQRPLF�VKLIW��0LJGDá�HW�DO�������� 

The second work included in the collection of articles, �0LJGDá�HW�DO������� studies 

the transcriptomic and epigenomic response to early hepatotoxic liver injury in the 

zebrafish as a model organism. Using thioacetamide (TAA) injections, we induced liver 

injury in adult zebrafish. We then collected cell-type specific transcriptomic and 

epigenomic data from untreated and treated animals using RNA-seq and ATAC-seq 

techniques on populations of hepatocytes, endothelial cells (EC) and hepatic stellate cells 

isolated by FACS. While focusing on a different biological context, the main analytical 

themes follow the ones explored in (Pawlak et al. 2019). The transcriptomic analysis 

employs gene co-expression clustering based on RNA-seq data collected across different 

cell types and treatment. This was obtained using a clustering technique called self 

organizing map (SOM) �/|IIOHU-Wirth, Kalcher, and Binder 2015). In addition to 

clustering, SOM provides a lower-dimensional representation of a complex gene 

expression dataset that can be presented as a 2-D image of co-expressed genes and their 

expression levels �0LJGDá� HW� DO�� ������ )LJ�� 1e). Analysis of the obtained clustering 

representation indicated that the first liver cell population exposed to hepatotoxin are EC 

as they were the most affected at the transcriptomic level. Among the identified co-

expression clusters, one in particular (cluster B) contained genes which showed the 

highest upregulation in response to TAA treatment in EC. Interestingly, this cluster 

contains genes related to metabolic and redox processes, including 20 members of the 
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cytochrome p450 superfamily. Similarly as in (Pawlak et al. 2019), we complemented the 

transcriptional picture with epigenomic information obtained from the ATAC-seq data. 

In this study we generated three ATAC-seq replicates per condition. Surprisingly, only 

few peak calling tools provide an option to include replicates, and most implementations 

are limited to only two replicates. To overcome this limitation, I updated our ATAC-seq 

pipeline so that the information from any number of replicates can be combined at the 

SHDN� FDOOLQJ� VWHS� XVLQJ�)LVKHU¶V�PHWKRG� (Mosteller and Fisher 1948). Analysis of the 

dynamics of promoter accessibility revealed that it followed the patterns observed at the 

transcriptome level. We observed the largest change in promoter accessibility in EC. 

Moreover, we found the largest number of gene promoters with an increased accessibility 

in cluster B. These results suggest promoter accessibility remodeling as an important 

mechanism driving the transcriptional response to liver injury. To infer the mechanism of 

gene regulation in response to TAA treatment, I performed motif enrichment analysis at 

the differentially accessible chromatin regions within the promoter regions of co-

expressed gene clusters. This analysis revealed enrichment of motifs recognized by 

known transcriptional activators, including pioneer factors FOXA1 and FOXA3 (Zaret 

and Carroll 2011), revealing potential players behind the observed promoter accessibility 

dynamics and a hypothetical mechanism underlying liver injury response. 

[FRUH��DQ�5�SDFNDJH�IRU�LQIHUHQFH�RI�JHQH�H[SUHVVLRQ�UHJXODWRUV��0LJGDá�

et al. 2022) 

The last publication included in this collection of articles, �0LJGDá�HW�DO������� 

takes advantage of the methodological experiences of the previous two and applies a 

predictive modeling approach to the gene expression regulation problem. Motif 

enrichment analysis results can be assessed through cross-referencing with the current 

state of knowledge on the studied biological process and known TFs interactions. 

However, creating a reliable cross-reference requires comprehensive annotation and an 

extensive knowledge about the mechanism of the TFs of interest, which is often sparse or 

non-existing (Tompa et al. 2005). An alternative approach to this problem is offered by 

predictive modeling methodology. Predictive modeling uses mathematical models to 

describe the problem at hand using collected experimental data. By expressing the 

problem in mathematical terms, it is possible to measure how well the model explains the 

observed data. Additionally, mathematical models can be used both to understand the 

investigated problem (eg. identify the putative regulatory motifs) and to make predictions 
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about the data that was not yet observed (eg. predict the regulatory effect of a mutation). 

�0LJGDá� HW� DO�� ����� builds on the concepts of gene expression prediction modeling 

methodology that already exists in the literature (FANTOM Consortium et al. 2009; 

Ouyang, Zhou, and Wong 2009; Natarajan et al. 2012; McLeay et al. 2012; Balwierz et 

al. 2014; Schmidt et al. 2017). Here, I developed the xcore R package that implements a 

flexible gene expression prediction framework. This tool allows modeling of gene 

expression directly from chromatin immunoprecipitation followed by sequencing (ChIP±

seq) experiments, instead of motifs, capitalizing on the large ChIP-seq databases available 

for mouse and human. To this end, each gene is described by its expression and the 

presence or absence of specific TF binding sites in its promoter. Using penalized linear 

regression, xcore estimates the activities of TFs. Such information can be used to generate 

testable hypotheses about the studied system. To validate and test the performance of the 

xcore, we applied it to the new cap analysis gene expression (CAGE) dataset (GSE17708) 

from transforming growth factor beta (TGFQ)-induced epithelial-mesenchymal 

transition (EMT) time-series experiment. The analyses revealed that xcore could identify 

a larger number of EMT regulators as compared to the state-of-the-art motif based 

ISMARA tool (Balwierz et al. 2014). The xcore R package and its user guide are publicly 

available on Bioconductor and GitHub (https://github.com/bkaczkowski/xcore). 

 

The discipline of gene regulation continues to shape itself as an exciting 

interdisciplinary field combining different areas of research in biology, mathematics and 

engineering. Progressive expansion in the knowledge of mechanisms underlying the 

dynamic expression of genes raises hopes to further advance medicine and other areas of 

life-sciences. Based on the available evidence, it is now established that many diseases, 

such as cancer or congenital defects, might be explained by underlying mutations in genes 

encoding transcription regulation machinery. As an example, the oncogenic transcription 

factor TAL1 is implicated in a large number of T-cell acute lymphoblastic leukemia cases. 

It acts in tandem with several other transcription factors to activate the TAL-1 regulated 

oncogenic programs (Sanda et al. 2012). The presence of single nucleotide 

polymorphisms (SNPs) in RE have also been identified as a causative factor for various 

human diseases, including cancer or congenital heart diseases (Maurano et al. 2012). The 

three publications included in this dissertation studied gene expression regulation using 

two approaches: classic descriptive bioinformatic analysis and predictive modeling. 

Recent work shows that a more accurate representation of gene regulation can be provided 

by deep neural networks (DNN) methods. DNN are mathematical models consisting of 
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connected units called artificial neurons organized in multiple layers. Key features of 

DNN is their ability to model complex non-linear relationships and to automatically 

discover relevant representations from the raw data (LeCun, Bengio, and Hinton 2015). 

Future development of these approaches and their applications are expected to 

revolutionize the fields of genomics and personalized medicine. Indeed, DNN-based 

studies have already provided interesting insights into the system level organization of 

transcriptional regulation. To provide a few examples, deep neural networks using only 

125 TFs could explain around 80% of the transcriptomics variation in a broad range of 

experimental datasets �0DJQXVVRQ��7HJQpU��DQG�*XVWDIVVRQ������. Recently, DeepMind 

published a neural network that helps to understand the mechanism of disease associated 

SNPs (Avsec et al. 2021). These examples show the great potential of deep neural 

networks for advancing our understanding of gene regulation mechanisms and to create 

tools that could help guide further experimental design. 
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Assumptions and aim of the work 

 

The research presented in this doctoral dissertation was based on the following 

assumptions: 

� transcriptional regulation through combinatorial TF binding is the key mechanism 

underlying the specification of cell identity, 

� co-expressed genes are likely to share their underlying regulatory grammar in the 

form of a combination of active TF binding events, 

� chromatin accessibility is the key determinant of TF binding and motif-based 

predictions of TFBS in accessible chromatin regions can serve as an 

approximation to TF binding data, 

� TF binding specificity is evolutionary conserved between mammals and zebrafish. 

 

The research presented in this doctoral dissertation aimed to: 

� FKDUDFWHUL]H�WKH�FDUGLRP\RF\WHV¶�WUDQVFULSWRPH�DQG�HSLJHQRPH�ODQGVFDSH�DW�HDUO\�

stages of heart development using zebrafish as a model organism, 

� LGHQWLI\� JHQH� UHJXODWRU\� QHWZRUN� JRYHUQLQJ� FDUGLRP\RF\WHV¶� JHQH� H[SUHVVLRQ�

program at early stages of heart development in zebrafish, 

� characterize the transcriptomic and epigenomic response to hepatotoxic liver 

injury at the cell type level in endothelial cells, hepatocytes and hepatic stellate 

cells in vivo, 

� develop bioinformatic pipeline for ATAC-seq data processing and open 

chromatin regions identification, 

� develop bioinformatic tools for gene expression modeling and transcription factor 

activity prediction in a complex biological processes.  



Dynamics of cardiomyocyte transcriptome
and chromatin landscape demarcates key events
of heart development

Michal Pawlak,1 Katarzyna Z. Kedzierska,1 Maciej Migdal,1 Karim Abu Nahia,1

Jordan A. Ramilowski,2 Lukasz Bugajski,3 Kosuke Hashimoto,2 Aleksandra Marconi,1

Katarzyna Piwocka,3 Piero Carninci,2 and Cecilia L. Winata1,4
1International Institute of Molecular and Cell Biology inWarsaw, Laboratory of Zebrafish Developmental Genomics, 02-109Warsaw,
Poland; 2RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan; 3Nencki Institute of Experimental Biology,
Laboratoryof Cytometry, 02-093Warsaw, Poland; 4MaxPlanck Institute forHeart and LungResearch,61231BadNauheim,Germany

Organogenesis involves dynamic regulation of gene transcription and complex multipathway interactions. Despite our

knowledge of key factors regulating various steps of heart morphogenesis, considerable challenges in understanding its

mechanism still exist because little is known about their downstream targets and interactive regulatory network. To better

understand transcriptional regulatorymechanism driving heart development and the consequences of its disruption in vivo,

we performed time-series analyses of the transcriptome and genome-wide chromatin accessibility in isolated cardiomyo-

cytes (CMs) from wild-type zebrafish embryos at developmental stages corresponding to heart tube morphogenesis, loop-

ing, and maturation. We identified genetic regulatory modules driving crucial events of heart development that contained

key cardiac TFs and are associated with open chromatin regions enriched for DNA sequence motifs belonging to the family

of the corresponding TFs. Loss of function of cardiac TFs Gata5, Tbx5a, andHand2 affected the cardiac regulatory networks

and caused global changes in chromatin accessibility profile, indicating their role in heart development. Among regions with

differential chromatin accessibility in mutants were highly conserved noncoding elements that represent putative enhancers

driving heart development. The most prominent gene expression changes, which correlated with chromatin accessibility

modifications within their proximal promoter regions, occurred between heart tube morphogenesis and looping, and

were associated with metabolic shift and hematopoietic/cardiac fate switch during CM maturation. Our results revealed

the dynamic regulatory landscape throughout heart development and identified interactive molecular networks driving

key events of heart morphogenesis.

[Supplemental material is available for this article.]

Themyocardiummakes upmost of the heart tissues and is mainly
responsible for its function. Upon completion of gastrulation,
heart muscle cells or cardiomyocytes (CMs) are specified from a
pool of mesodermal progenitors at the anterior portion of the em-
bryonic lateral plate mesoderm (Stainier et al. 1993; Stainier and
Fishman 1994; Kelly et al. 2014). These progenitors migrate to
the midline and form the primitive heart tube (Stainier et al.
1993), which subsequently expands through cell division and ad-
dition of more cells from the progenitor pool (Knight and Yelon
2016). Looping of the heart tube gives rise to the atria and ventri-
cles. Although the vertebrate heart can have between two and four
chambers, the stepwise morphogenesis of progenitors specifica-
tion,migration, tube formation, and looping, are highly conserved
between species (Jensen et al. 2013).

CMs are specified early during embryogenesis and undergo
proliferation, migration, and differentiation, which collectively
give rise to a fully formed and functioning heart. Crucial to regulat-
ing each step of heart morphogenesis are cardiac transcription fac-
tors (TFs) NKX2-5, GATA5, TBX5, and HAND2 (Nemer 2008).

These TFs are known to play a role in establishingCM identity, reg-
ulating the formation and looping of the heart tube and specifica-
tion of atrial and ventricular CMs. Members of the GATA family of
TFs (GATA4/5/6) are responsible for the earliest step of cardiac pro-
genitor specification (Reiter et al. 1999; Singh et al. 2010; Lou et al.
2011; Turbendian et al. 2013). They activate the expression of
Nkx2-5 (Lien et al. 1999), which is responsible for initiating the ex-
pression ofmany cardiac genes (Targoff et al. 2008). Hand2, anoth-
er TF expressed in CM progenitors, is responsible for proliferation
of ventricular progenitors (Yelon et al. 2000) and regulating the ex-
pression of Tbx5, which is necessary for atrial specification
(Liberatore et al. 2000; Bruneau et al. 2001).

Despite established knowledge, little is known about the mo-
lecular mechanism and downstream targets of cardiac TFs.
Transcription is modulated by cis-regulatory elements in noncod-
ing regions of the genome, which serve as binding sites for TFs
(Shlyueva et al. 2014). Although these regulatory elements equally
contribute to the molecular mechanism controlling development,
there is still a lack of systematic resources and understanding of
their roles in heart development. Moreover, cardiac TFs have
been shown to interact with chromatin-modifying factors, and
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the loss of functionof several histone-modifying enzymeshas been
found to affect various aspects of cardiac development (Miller et al.
2008;Nimura et al. 2009; Takeuchi et al. 2011). Therefore, the chro-
matin landscape is another factor that needs tobe consideredwhen
studying heart development.

The zebrafish is an idealmodel organism to study heart devel-
opment because it allows for accessing developing embryos imme-
diately after fertilization, and it can survive without a functioning
heart up to late developmental stages (Stainier 2001). To elucidate
the dynamics of the transcriptional regulatory landscape during
heart development, we isolated CMs directly from the developing
wild-type zebrafish heart at three key stages of morphogenesis:
linear heart tube formation (24 h post-fertilization [hpf]), chamber
formation and differentiation (48 hpf), and heart maturation (72
hpf). Similarly, we isolated CMs from cardiac TF mutants of
gata5, tbx5a, and hand2 at 72 hpf. We combined transcriptome
profiling (RNA-seq) with an assay for chromatin accessibility
(ATAC-seq) (Buenrostro et al. 2013) to capture the dynamics of
regulatory landscape throughout the progression of heartmorpho-
genesis in vivo therefore unravelling the gene regulatory network
driving key processes of heart development.

Results

CM transcriptome reveals strong dynamics at early stages of heart

morphogenesis

Twoof the earliestmarkers of cardiac lineage arenkx2.5 andmyosin
light chain 7 (myl7), which are expressed in cardiac precursor cells
in the anterior lateral plate mesoderm (George et al. 2015) and in
differentiated myocardial cells (Chen et al. 2008), respectively. To
study gene regulatory networks underlying zebrafish heart devel-
opment, we isolated CMs from zebrafish transgenic lines
Tg(nxk2.5:GFP) (Witzel et al. 2012) and Tg(myl7:EGFP) (D’Amico
et al. 2007) using fluorescence-activated cell sorting (FACS) (Fig.
1A). Cells were collected at 24, 48, and 72 hpf (Fig. 1B). Because
of its earlier onset of CM-specific GFP expression, Tg(nxk2.5:GFP)
was used to sort CM at 24 hpf, whereas Tg(myl7:EGFP) was used
for subsequent stages (48 hpf and 72 hpf) (Houk and Yelon
2016). The average fraction of FACS-yielded GFP+ events obtained
were between1.37%and2.56%of total singlet events (Supplemen-
tal Fig. 1A). Tomonitor thepurityof FACSandestablish the identity
of the isolated cells, wemeasuredmRNA levels of nkx2.5,myl7, and
GFP in bothGFP+ andGFP− cells. The expression of the CMmark-
ers and GFPwere significantly enriched (P-value≤0.05) in GFP+ as
compared to GFP− fraction (Supplemental Fig. 1B). In contrast,
mRNA levels of neurogenin1 (ngn1), a neuronal-specific gene,
were higher in GFP− cells. In line with that, RNA-seq expression
of nkx2.5, myl7, and myh6 was significantly enriched (adjusted P-
value≤0.05) in GFP+ as compared to GFP− cells, whereas ex-
pressionofnon-CMmarkers suchas skeletalmuscle (myog), pancre-
as (ins), pharyngeal arch ( frem2a), retina (arr3b, otx5), skin (tp63,
col16a1), neural system (neurog1, zic3, otx1), and eye (pou4f2)
were higher in GFP− (Supplemental Fig. 2). Gene Ontology (GO)
enrichment analysis of differentially expressed genes between
GFP+ and GFP− across all three stages of heart development re-
vealed the overrepresentation of CM-specific biological processes
such as cell migration, cardiac development, and heart function
(Fig. 1C; Supplemental Table 1). Among 50 genes with the highest
average expressionacross all developmental stages, 35have specific
functions in CM according to the ZFIN database (https://zfin.org)
and eight are associatedwithhumancardiac diseases including car-

diomyopathy (ttn.1, mybpc3, ttn.2, acta1b, actn2b), atrial septal de-
fects (actc1a, myh6), and Laing distal myopathy (vmhc) (Fig. 1D)
according to the Online Mendelian Inheritance in Man database
(https://www.omim.org/).

To determine the dynamics of CM transcriptome throughout
development, we applied principal component analysis (PCA) and
clustering based on Euclidean distance. Both analyses revealed
strong dissimilarity in transcriptome profiles between CM at 24
hpf and later stages of heart development as compared to those be-
tween 48 and 72 hpf (Fig. 1E,F). This suggests that major gene ex-
pression profile changes of developing CMs occur between 24 and
48 hpf and correspond to heart tube formation and looping.

Taken together, transcriptome analyses identified CM-specif-
ic gene expression signatures among highly abundant transcripts
and revealed the dynamic nature of gene expression profiles dur-
ing heart morphogenesis.

Chromatin accessibility is correlated with CM gene expression

levels during heart development

To characterize chromatin dynamics throughout heart develop-
ment, we used an assay for transposase-accessible chromatin with
high-throughput sequencing (ATAC-seq) and profiled chromatin
accessibility at three developmental stagesmatching our transcrip-
tome analyses (Buenrostro et al. 2013). To identify genome-wide
nucleosome free regions (NFR), ATAC-seq read fragments were par-
titioned into four populations (Fig. 2A) based on exponential func-
tion for fragment distribution pattern at insert sizes below one
nucleosome (123 bp) andGaussian distributions for 1, 2, and 3 nu-
cleosomes as previously described (Buenrostro et al. 2013). PCA
analysis (Fig. 2B) and clustering based on Euclidian distances be-
tween ATAC-seq samples based on their NFR profiles (Fig. 2C) re-
vealed that biological replicas clustered together, whereas the
largest changes in chromatin accessibility were observed between
24 and 48 hpf stages, in agreement with observed transcriptome
changes of CMs during heart development. We observed a large
numberofNFRs common to all stages (16,055), aswell as those spe-
cific to a single developmental stage. The most stage-specific NFRs
were found at 24 hpf (22,656) (Fig. 2D). The highest fraction of
NFRs was localized within promoter (within ±3 kb of transcription
start site, TSS; ∼30% of total NFRs), followed by intergenic (∼25%)
and intronic (20%) regions (Fig. 2E; Supplemental Table 2). These
ratios remained comparable across all three developmental stages.
NFR consensus heatmapswithin transcription start site (TSS) prox-
imalpromoter regions (±3 kb) (Fig. 2F) compared todistal promoter
regions (more than ±3 kb of TSS) (Fig. 2G), as well as ATAC-seq read
density over the gene bodies of 1000 genes most highly expressed
in CMs at all three stages of heart development (Fig. 2H), revealed
the enrichment of NFRs around TSS regions. We further observed
chromatin accessibility reflected by the presence of NFR in gene
promoter regions was significantly correlated with the expression
levels of the corresponding genes to which the promoter belonged
to (Spearman’s rho 0.46–0.48) at each stage of heart development
(Fig. 2I). Our observations revealed a strong link between chroma-
tin accessibility of promoter regions and gene expression levels.

Coexpression network analysis identifies CM regulatory modules

To better understand the relationship and functionality of cardiac
genes involved in heart morphogenesis,we identified gene regula-
tory networks in an unsupervised and unbiased manner using the
weighted gene correlation network analysis (WGCNA) based on
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RNA-seq expression profiles (Langfelder and Horvath 2008).
Hierarchical clustering of the similarity/dissimilarity matrix across
the entire set of transcriptome samples distinguished 37 gene
modules (Fig. 3A; Supplemental Table 3), five of which were en-
riched in functional terms related to cardiovascular system devel-
opment and function (Fig. 3B; Supplemental Table 4): turquoise
(4085 genes), brown (2156 genes), green (1166 genes), salmon
(756 genes), and sienna3 (75 genes). We refer to these modules

as “cardiac modules.” Functional terms enriched in these cardiac
modules included “embryonic heart tube development” (brown,
green, and sienna3), “cardioblast differentiation” (green), “heart
valve development” (salmon), “heart process” and “heart forma-
tion” (turquoise). The relatively small sienna3 module was
enriched in GO terms associated with multiple cardiac develop-
mental processes including “heart tube development,” “cardio-
blast migration,” and “heart rudiment development.”
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Figure 1. CM transcriptome landscape during heart development. (A) Schematics of experimental design. (B) Light sheet fluorescence microscope
(LSFM) images of GFP-labeled CMs of developing zebrafish heart: (p) posterior; (an) anterior; (v) ventral; (d) dorsal. The dotted line indicates exact
area of the LSFM image. (C) Network of 20 top-score GO clusters enriched in genes commonly up-regulated in GFP+ across heart development. Size nodes
refer to the number of genes contributing to the same GO and nodes that share the same cluster ID are close to each other, adjusted P-value≤0.05. (D)
Heatmap of top 50 highly expressed genes between 24 and 72 hpf based on normalized expression value (regularized log [rld]). (E) Graphical represen-
tation of PCA of CM RNA-seq data. (F ) Heatmap and clustering of RNA-seq sample-to-sample Euclidean distances.
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To reveal potential driver genes with regulatory roles in each
cardiacmodule,we searched for TFs andcalculated their connectiv-
ity to other geneswithin a givenmodule (normalized kDiff), aswell
as how their expression is affected by CM phenotypic traits (CM
correlation) (Fig. 3C). Most of the cardiac modules contained TFs
previously implicated inheart development, suchas gata1 (brown),
tbx5a, sox10 (turquoise), hand2, smad7 (green), as well as gata5,
nkx2.5, and tbx20 (sienna3) (Ahn et al. 2000; Montero et al. 2002;
Holtzinger and Evans 2007; Targoff et al. 2008; Moskowitz et al.
2011). Each of the modules exhibited different expression profile
dynamics (eigengene expression) across three developmental stag-
es, in GFP+ and GFP− fractions, further called CM+ and CM−, re-
spectively (Fig 3D). Two broad patterns of eigengene expression
could be observed: modules with decreasing cardiac gene expres-
sion during heart development (brown and green) and modules
in which expression increases between 24 and 48 hpf and then de-
creases between48 and72hpf (salmon, sienna3, and turquoise). In
addition, CM+ eigengene expression in the sienna3 module was
consistently higher than in CM− samples at all stages of develop-
ment, further suggesting the specificity of this module to CM.

Thepresenceof keycardiacTFs ineachmodulepromptedus to
identify specific functionalpatterns related to cardiovasculardevel-
opment. The sienna3module,which contained cardiac TFsnkx2.5,
gata5, gata6, and tbx20, also containedmany other genes implicat-
ed in various aspects of heartmorphogenesis, includingCMmigra-
tion and differentiation, and heart looping including popdc2,
apobec2a, and tdgf1 (Xu et al. 1999; Etard et al. 2010; Wang et al.

2011; Kirchmaier et al. 2012; Sakabe et al. 2012). Additionally,
the module also contained many genes involved in cell adhesion
and structural constituents of the heart muscle, which were previ-
ously implicated in cardiomyopathy. These included actc1a, myl7,
myh7ba, myh7bb, vmhc, and ttn.2 (Olson et al. 1998; Xu et al. 2002;
Shih et al. 2015). In support of this network, Popdc2 andGata6were
previously shown to be a direct transcriptional target of NKX2-5 in
mouseembryonicheart (Molkentin et al. 2000;Dupays et al. 2015).
Additional evidence supports the cardiac-specific transcriptional
activation of nkx2.5 by Gata TFs (Lien et al. 1999).

Genes of the Wnt, Notch, TGFB, and FGF pathways were
highly represented in all modules except sienna3, which consisted
ofmostly specializedCMgenes. In particular, genes of both canon-
ical and noncanonicalWnt signaling pathways involved in cardio-
genesis (Ueno et al. 2007; Piven and Winata 2017) were almost
exclusively distributed between the green and salmon modules.
Finally, another cardiac TF, Hand2, was present in the green mod-
ule, suggesting that it might control these pathways. Altogether,
we identified genemodules exhibiting unique expression patterns
throughout heart development, representing potential regulatory
networks underlying various processes of heart development.

Integrative analysis of RNA-seq and ATAC-seq identifies

regulatory networks of CM maturation

To further explore the relationship between chromatin state and
transcriptional regulation of heart development, we integrated
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Figure 2. Cross-talk between transcriptome and chromatin accessibility profile across stages of cardiac development. (A) ATAC-seq read distribution and
characterization of NFR fractions. (B) PCA of NFR chromatin accessibility during heart development. (C) Euclidian distances between chromatin accessibility
within NFR. (D) Comparison of NFR presence and overlap across stages of heart development. (E) Genomic annotation of CM NFR consensus at different
stages of heart development. (F) CM NFR consensus coverage heatmap of TSS proximal (±3 kb of TSS) regions centered on ATAC-seq peak summits. (G)
CM NFR consensus coverage heatmap of TSS distal (more than ±3 kb of TSS) regions centered on ATAC-seq peak summits. (H) Metaplot of ATAC-seq read
density over the gene bodies of the 1000 genes most highly expressed in CMs at each developmental stage. (TES) transcription end site. (I) Spearman’s
correlation of normalized log (rld) RNA-seq gene expression and ATAC-seq chromatin accessibility in corresponding NFR regions (±3 kb of TSS).
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coexpression networks generated from RNA-seq with accessible
chromatin regions identified by ATAC-seq. We examined NFRs lo-
calized within ±3 kb of the TSS of genes assigned to the samemod-
ule for the presence of TF binding motifs (Table 1; Supplemental
Fig. 3). NFRs associated with genes within the module sienna3
(which contained gata5/6, nkx2.5, and tbx20) were also enriched
in motifs belonging to these families of TFs (Gata family [Gata1/
2/3/4/6], Nkx family [Nkx2.2, Nkx2.5], Smad3 and T-box family
[Tbr1]), whereas the salmon module containing the sox3 gene
showed overrepresentation of Sox3 motif. Similarly, in the tur-
quoise and green modules (containing tbx5, hand2, and smad7),
we found a wide range of significantly enriched (P-value≤0.05)
TFmotifs including Tbx5 and Smad2/4, respectively. The presence

of the TFs together with the enrichment
of their respective recognition motifs
suggests their regulatory role within
each module. Moreover, we observed an
overrepresentation of motifs for TFs
with profound roles in heart develop-
ment, such as Sox10 in the salmonmod-
ule and Tgif1/2 in both the sienna3 and
turquoise modules (Montero et al. 2002;
Powers et al. 2010), although their corre-
sponding TFs were not present in the
matching modules.

To understand the relationship be-
tween chromatin accessibility and gene
expression and to link TFs to their effec-
tor genes, we identified genes that were
dynamically regulated and associated
with regions of differential chromatin ac-
cessibility (within ±3 kb of TSS) through-
out heart development (Fig. 4A). We
compared normalized changes of gene
expression to those of the corresponding
NFRs between 24 and48hpf aswell as be-
tween48 and72hpf (Fig. 4B; Supplemen-
tal Tables 1, 5). We observed strong up-
regulation of a large number of genes
within the turquoise and salmon mod-
ules and down-regulation of genes in
the brownmodule and formost genes be-
longing to the green module. This was
generally consistent with the direction
of changes in chromatin accessibility,
for example, gpd2, sox10 in the turquoise
module, commd5 in the salmon, tbx16l,
pappa2 in the brown, and tfr1a, aff2 in
the green; yet we also observed genes
with the opposite behavior, including
klf6a, irf2bp2a in the turquoise module,
sema4ab in the brown, and serinc2 in the
green. No significant changes in gene ex-
pression andNFRwere observed between
48 and 72hpf (Supplemental Tables 1, 5),
suggesting that both gene expression and
chromatin accessibility were more stable
by heart chamber formation.

GO and pathway analysis of the tur-
quoise module revealed genes involved
in mitochondrial oxidation (mdh2,
gpd2), carbohydrate metabolism (rdh8a),

and ketone body metabolism (bdh2) (Fig. 4C,D; Supplemental
Table 6). We identified sox10, klf6a, and irf2bp2a, which were pre-
viously linked to zebrafish heart morphogenesis (Hill et al. 2017),
as hub genes linked to their effector genes containing correspond-
ing binding motifs in NFRs within their proximal promoter re-
gions. Because the vast majority of genes within the turquoise
module exhibited significant increase in expression and chroma-
tin accessibility within associated NFRs between 24 and 48 hpf,
it suggests the presence of a metabolic switch that takes place in
CM between those developmental stages. This agrees with previ-
ous reports showing thatmitochondrial oxidative capacity and fat-
ty acid oxidation potential increase along with CM maturation
(Lopaschuk and Jaswal 2010).

BA

DC

Figure 3. Cardiac coexpression regulatory networks. (A) Hierarchical clustering of gene expression sim-
ilarity/dissimilarity matrix. (B) Cardiovascular-related GO enrichment in five cardiacmodules. (C) Module
gene connectivity plot of selected TFs. Twenty TFs with the highest normalized kDiff are shown. (D)
Cardiac module eigengene expression during heart development.
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Conversely, most of the genes assigned to the brown module
were down-regulated from 48 hpf onward along with the associat-
ed NFR chromatin accessibility (Fig. 4C). Pathway andGO analysis
of the brownmodule (Supplemental Table 7) revealed the presence
of genes implicated in embryonic hematopoiesis. Notably, we
have identified a number of hub TFs including myb (v-myb) and
prdm1a, mybl2, tbx16l, e2f8, klf17 as well as their effector genes,
such as lmo2, tal1, alas2, slc4a1a with profound roles in hemato-
poiesis (Fig. 4E; Gering et al. 2003; Paw et al. 2003; Chan et al.
2009; Soza-Ried et al. 2010; Kotkamp et al. 2014). Moreover,
ATAC-seq analyses revealed the enrichment of Gata, Fli1, Ets,
Erg, and Etv motifs (Table 1), which belong to the regulatory net-
work underlying hematopoietic/vascular lineage specification
(Gottgens et al. 2002; Pimanda et al. 2007; Loughran et al. 2008;

Kaneko et al. 2010). The brown module possibly represents the
regulatory network leading to hematopoietic fate, whose suppres-
sion promotes the development of CM identity. Altogether, we
identified regulatory networks leading to metabolic and cardiac/
hematopoietic changes occurring in CMs during early heart mor-
phogenesis (Supplemental Table 8), which are regulated at both
gene expression and chromatin levels.

Disruption of cardiac TFs affects regulatory networks driving CM

maturation

To further explore cardiac regulatory modules and validate their
importance in normal heart development, we used zebrafish mu-
tants deficient in cardiac-related TFs (Gata5, Hand2, and Tbx5a),

Table 1. HOMER-identified TF motifs found in NFR of cardiac coexpression modules

Brown Green

Motif
name P-value

Target
sequences

with motif (of
4698)

Target
sequences
with motif

(%)

Background
sequences with

motif (%)
Motif
name P-value

Target
sequences

with motif (of
4698)

Target
sequences
with motif

(%)

Background
sequences with

motif (%)

Smad3 1×10−2 1172 24.94 23.07 Smad4 1×10−4 545 19.93 16.96
Bhlh 1 × 10−2 904 19.24 17.83 Smad2 1×10−2 495 18.11 15.85
Fli1 1 × 10−9 786 16.73 13.44 Sox3 1×10−2 420 15.36 13.41
Etv1 1 ×10−5 729 15.51 12.97 Sox6 1×10−2 407 14.89 12.87
Nfy 1 × 10−6 702 14.94 12.41 Sox10 1×10−2 387 14.16 12.41
Sox3 1×10−2 700 14.90 13.63 Gata4 1 ×10−2 284 10.39 8.84
Erg 1 ×10−3 672 14.30 12.46 Gata6 1 ×10−2 255 9.33 7.79
Gata3 1 ×10−3 664 14.13 12.30 Sox2 1×10−2 218 7.97 6.7
Ets1 1 × 10−7 619 13.17 10.60 Sox4 1×10−3 212 7.75 6.12
Ehf 1 × 10−2 581 12.36 11.16 Gata2 1 ×10−3 201 7.35 5.75

Salmon Sienna3

Motif
name P-value

Target
Sequences

with motif (of
4698)

Target
sequences
with motif

(%)

Background
sequences with

motif (%)
Motif
name P-value

Target
Sequences

with motif (of
4698)

Target
sequences
with motif

(%)

Background
sequences with

motif (%)

Sox3 1×10−8 332 18.24% 13.21% Tgif1 1 × 10−2 77 45.03% 33.41%
Sox10 1×10−7 307 16.87% 12.34% Tgif2 1 × 10−2 77 45.03% 34.57%
Neurog2 1×10−2 299 16.43% 14.17% Meis1 1 × 10−2 46 26.90% 18.63%
Sox6 1×10−4 293 16.10% 12.60% Nkx2.5 1 ×10−2 44 25.73% 17.61%
Atoh1 1×10−2 215 11.81% 9.78% Bapx1 1×10−2 42 24.56% 16.10%
Sox15 1×10−6 202 11.10% 7.65% Nkx2.2 1 ×10−2 41 23.98% 16.70%
Sox2 1×10−6 178 9.78% 6.64% Gata3 1 ×10−3 38 22.22% 13.17%
Neurod1 1×10−2 159 8.74% 7.17% Mef2b 1×10−9 33 19.30% 5.66%
Sox4 1×10−4 157 8.63% 6.08% Tbr1 1 ×10−2 33 19.30% 12.02%
Maz 1×10−2 141 7.75% 6.03% Gata6 1 ×10−3 29 16.96% 8.61%

Turquoise

Motif name P-value
Target sequences with

motif (of 4698)
Target sequences
with motif (%)

Background sequences
with motif (%)

Scl 1 × 10−6 3906 45.22 42.29
Tgif2 1 × 10−20 3467 40.14 34.68
Tgif1 1 × 10−20 3353 38.82 33.42
Nanog 1×10−4 3311 38.34 35.88
Pitx1 1 ×10−8 3055 35.37 31.99
Thrb 1 ×10−3 2376 27.51 25.78
Tbx5 1×10−6 2270 26.28 23.71
Nkx6.1 1 × 10−2 2166 25.08 23.66
Ar 1 × 10−2 2120 24.55 23.18
Smad3 1×10−2 2076 24.04 22.37

HOMER-identified motifs with the highest prevalence in NFRs localized ±3 kb around the TSSs of selected cardiac module genes are listed. P-value <
0.05. Known vertebrate TF motifs were used for analysis.

Regulatory landscape of heart development

Genome Research 511
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244491.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244491.118/-/DC1


the disruption of which was linked to impaired migration of the
cardiac primordia to the embryonic midline, reduced number of
myocardial precursors, and failure of heart looping, respectively
(Reiter et al. 1999; Yelon et al. 2000; Garrity et al. 2002). RNA-seq
and ATAC-seq were performed on CMs isolated from homozygous
gata5tm236a/tm236a, tbx5am21/ m21, hand2s6/s6 mutant 72 hpf embry-

os in Tg(myl7:EGFP) genetic background.
Homozygous mutant embryos were se-
lected based on their phenotypes of car-
dia bifida (gata5tm236a/tm236a, hand2s6/s6)
or heart-string (tbx5am21/ m21) (Fig. 5A).

A number of genes were dys-
regulated (absolute[log2FC] > 0, adjusted
P-value≤0.05) in response to disruption
of gata5 (287 down-regulated, 739
up-regulated), hand2 (288 down-regulat-
ed, 618 up-regulated), and tbx5a (255
down-regulated, 584 up-regulated) (Fig.
5B; Supplemental Table 9). Only a small
overlap was observed between genes
down-regulated in the three mutants
(14 genes including vcanb, bmp3, and
col18a1b), whereas up-regulated genes
showed larger overlap (307 genes, e.g.,
trim46, map4k6, mtf1) between all three
mutants. GO enrichment analysis of all
down-regulated genes revealed the pres-
ence of biological processes related to
muscle development, muscle function,
heart process, and sensory perception
signaling; up-regulated genes were en-
riched in biological processes related to
ion transport and inflammatory re-
sponse (Supplemental Table 10).

Changes in chromatin accessibility
of NFRs localized in proximal promoter
regions (±3 kb of TSS) of mutants and
wild-type embryos were generally less
pronounced than changes in gene ex-
pression (Fig. 5B; Supplemental Table
9). Moreover, loss of different TFs affect-
ed the chromatin to a variable extent,
the largest of which occurred in
gata5tm236a/tm236a mutants (335 differen-
tially accessible NFRs associated with
genes enriched in cardiac muscle devel-
opment processes) (Fig. 5B; Supplemen-
tal Table 10). In hand2s6/s6 mutants, 53
NFRs were down-regulated. Lesser pro-
nounced chromatin changeswere identi-
fied in tbx5am21/ m21 mutant (17 NFRs).
Seven down-regulated NFRs associated
with nkx1.21a, dmd, frzb, gpr4, and vap
were common between gata5tm236a/

tm236a and hand2s6/s6 mutants, whereas
246 up-regulated ones were localized in
the proximity of nr4a1,mycbp2, irf2bp2a,
rpl3. No differentially regulated proximal
NFRs were shared between all three
mutants.

We further explored which fraction
ofmutant down-regulated genes contrib-

uted to the cardiac regulatory modules identified in wild-type
analyses. We found that 31% (91 genes), 24% (71 genes), and 31%
(79 genes) of total down-regulated genes in gata5tm236a/tm236a,
hand2s6/s6, and tbx5am21/m21mutantswere present in cardiacmod-
ules,mainly in the brown and greenmodules (Fig. 5C). Among the
14 genes thatwere commonly down-regulated in all threemutants,
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Figure 4. Dynamic regulatory networks of differentiating CMs. (A) Strategy used to establish gene-
chromatin regulatory network. (B) Changes (log2FC) of gene expression compared to those in chromatin
accessibility of cardiac module genes during heart development. Only significant (FDR <0.05) genes are
shown. (C ) Regulatory networks of heart development. Arrows indicate the direction of interaction.
Colors and the intensity of the circle edges indicate changes of chromatin accessibility, whereas those in-
side the circle show expression changes. Only significant (adjusted P-value≤0.05) genes are shown. Hub
TFs are indicated in red font. (D) Visualization of ATAC-seq and RNA-seq read coverage of selected geno-
mic regions related to the turquoise module. (E) Visualization of ATAC-seq and RNA-seq read coverage of
selected genomic regions related to the brownmodule. Time points, NFRs, and TF binding motifs within
NFRs are indicated.
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four belonged to green (nid1b, papss2b, vcanb, bmp3) and two to
salmon (plppr3a, spon1b) modules. Genes including vcan, plppr3a,
andBmp familywere previously found toplaya crucial role inheart
morphogenesis and function (Marques and Yelon 2009; Kern et al.
2010; Chandra et al. 2018). Similarly, comparing chromatin acces-
sibility data revealed that 21% (73 regions), 24% (13 regions), and
29% (five regions) of proximal NFRs that showed decreased acces-

sibility in gata5tm236a/tm236a,hand2s6/s6, and tbx5am21/ m21mutants
were located within the proximal promoters of genes belonging to
cardiac modules (Fig. 5C). We also explored mutant up-regulated
genes and proximal NFRs associated with cardiac modules (Fig.
5D). It showed that 20% (153 genes), 21% (134 genes), and 20%
(119 genes) of total up-regulated genes in gata5tm236a/tm236a,
hand2s6/s6, and tbx5am21/m21 mutants were present in cardiac

BA

DC

E

Figure 5. Loss-of-function mutations of cardiac TFs alters regulatory networks involved in heart development. (A) LSFM images of GFP-labeled CMs of
wild-type and TFmutant zebrafish hearts at 72 hpf. The dotted line indicates exact area of the LSFM image. (B) Venn diagrams and GO enrichment analysis
of TFmutant down-regulated (blue) and up-regulated (red) genes and chromatin accessibility of proximal promoter NFRs (±3 kb of TSS), adjusted P-value≤
0.05. (C) Percent distribution of cardiac module down-regulated genes/proximal NFR chromatin accessibility as compared to total number of TF mutants
down-regulated genes/proximal NFR chromatin accessibility. (D) Percent distribution of cardiac module up-regulated genes/proximal NFR chromatin ac-
cessibility as compared to total number of TF mutants up-regulated genes/proximal NFR chromatin accessibility. (E) Cardiac module genes with differen-
tially regulated expression and chromatin accessibility of proximal promoter NFRs (±3 kb of TSS) in gata5, hand2, and tbx5a mutants.
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modules, predominantly in the brown and turquoise modules.
Consequently, the most prominent changes were observed for
proximal NFRs in the brown and turquoise modules, and 43%
(292 regions) and37%(229 regions) of totalup-regulatedNFRscon-
tributed to cardiacmodules in gata5tm236a/tm236a andhand2s6/s6.No
changeswere observed in tbx5am21/ m21mutants. The vastmajority
of either down-regulated or up-regulated cardiacmodule genes did
not exhibit a similar regulation of NFR chromatin accessibility
within their promoter regulatory regions (Supplemental Fig. 4).
We observed that the decrease in proximal promoter NFRs was
not correlated with the gene expression down-regulation, except
for c1qtnf5 and adamts9, the latter being a vcan-degrading protease
required for normal heart development and cardiac allostasis
(Supplemental Fig. 5A,B; Kern et al. 2010). Similarly, only 10 genes
including hdr, gga3, fbxo5, rpl27, ybx1, actb2, cotl1, rnaset2 showed
an increase in both gene expression andNFR chromatin accessibil-
ity (Fig. 5E). Only 15 genes showed changes both in expression lev-
el and chromatin accessibility (either increasing or decreasing) in
gata5 mutant and three genes in hand2 mutant, whereas no such
genes were found in tbx5amutant.

Taken together, we identified genes that were responsive to
loss of Gata5, Hand2, and Tbx5a functions, including those be-
longing to cardiac modules, therefore providing a strong valida-
tion of the cardiac regulatory networks controlling specific
processes of heart development.

Evolutionarily conserved enhancers ensure proper heart

development

Gene expression changes in all three mutants were, to a large ex-
tent, uncorrelated with changes in chromatin accessibility, at least
in proximal promoter regulatory regions. This led us to question
whether loss of Gata5, Hand2, and/or Tbx5a cardiac TFsmay cause
global chromatin changes at genomic sites other than proximal
genepromoters, andwhether the observed changes in gene expres-
sion could be attributed to distal regulatory elements. To this end,
we have identified distal NFRs (more than ±3 kb of TSS) and their
differential accessibility between wild type at 72 hpf and the mu-
tants. We identified 59, 14, and 33 down-regulated and 551, 321,
and 2 regions up-regulated (adjusted P-value≤0.05) in
gata5tm236a/tm236a, hand2s6/s6, and tbx5am21/ m21 mutants, respec-
tively (Fig. 6A). Among down-regulated regions, one was in com-
mon between gata5tm236a/tm236a and tbx5m21/ m21 mutants (Fig.
6B). On the other hand, much stronger overlap was observed be-
tween gata5tm236a/tm236a and hand2s6/s6 mutants for up-regulated
regions (183 regions), whereas no overlap was found between
gata5tm236a/tm236a and tbx5m21/ m21. One region at Chr 21:
15,013,048–15,013,154 was commonly up-regulated in all three
mutants. To further explore genomic locations of differentially reg-
ulateddistalNFRs and identifyevolutionary conservedputative en-
hancers, we compared themwith the database of highly conserved
noncoding elements (HCNEs) between zebrafish and human (Fig.
6C; Supplemental Table 11; Engströmet al. 2008).We found a total
of 22 regions to be conserved between zebrafish and human geno-
mic sequences among which three were down-regulated in tbx5a
and hand2 mutants, whereas 19 of them showed significantly in-
creased accessibility in hand2 and gata5 mutants. The three most
down-regulatedHCNEswere localizedonChromosome1, between
hand2 and fbxo8 loci (Chr 1: 37,584,384–37,584,724) as well as
those localized in the introns of ppp3ccb (Chr 10: 20,246,264–
20,246,845) and akt7a (Chr 20: 4,714,760–4,715,050) genes (Fig.
6D). We also identified HCNE-NFRs with increased chromatin ac-

cessibility in gata5 mutant (Chr 1: 8,598,642–8,598,893) and in
the genomic region at Chr 10: 8,580,509–8,581,153, which was
commonly up-regulated in hand2 and gata5 mutants (Fig. 6E).
Therefore, we have determined a number of distal NFRs whose ac-
cessibility is affected by mutations of cardiac TFs, among which
we identifiedhighlyconservedNFRs servingaspotential enhancers
that may play key roles in heart development.

Discussion

Heart development involves multiple layers of interactions at mo-
lecular, cellular, and tissue levels. These processes are regulated by
various TFs, signaling proteins, as well as epigenetic factors such as
histone and DNAmodifications, chromatin remodeling, and tran-
scriptional enhancers. We obtained CM-enriched cell fractions
from developing heart during crucial events of heart morphogen-
esis. GFP-positive cells were sorted from transgenic Tg(nxk2.5:
EGFP), Tg(myl7:EGFP) zebrafish embryos. In zebrafish, at 6-9
somite stage (∼12–14 hpf), nkx2.5 expression only partially over-
laps the anterior lateral plate mesoderm (ALPM) in its medial
part (Schoenebeck et al. 2007), whereas at 17 somite stage (∼17–
18 hpf), themost posterior nkx2.5+ cells of the bilateral cardiac pri-
mordia do not express myl7, a marker of terminal myocardial dif-
ferentiation, suggesting the presence of nkx2.5+ cells that do not
contribute to the myocardium (Yelon et al. 1999). This agrees
with other studies in zebrafish, suggesting the presence of specific
nkx2.5+ second heart field (SHF) progenitors that give rise to the
fraction of ventricular myocardium and outflow tract (OFT)
(Guner-Ataman et al. 2013). Nevertheless, it has been shown
that at prim-5 stage (24–30 hpf), nkx2.5 is expressed both in ven-
tricular and atrial myocardium exactly overlapping the expression
of myl7 (Yelon et al. 1999). The most prominent changes in gene
expression and chromatin accessibility occurred between linear
heart tube formation (24 hpf) and looping (48 hpf). This major
shift in molecular profile likely reflects the continuous process of
CMdifferentiation throughoutwhich progenitorsmigrate and dif-
ferentiate into CMs once they are incorporated into the growing
heart tube (Kelly et al. 2014). Importantly, genes in the sienna3
and turquoise modules showed significant increase in expression
between the two developmental stages. In particular, sienna3
genes were enriched in the largest number of GO terms related
to cardiac function and contained at least three TFs known for
their crucial roles in specification of CMs and their function in
heart contraction (Singh et al. 2005, 2010), which suggests the
prominent role of this network in CM differentiation and heart
tube formation during this developmental period. Concordantly,
we observed that chromatin landscape changedmost significantly
between 24 and 48 hpf, suggesting that the changes in gene ex-
pression profiles during this stage were likely regulated at the chro-
matin level. Besides validating the biological relevance of our
ATAC-seq data set, this observation suggests that active chromatin
remodeling occurs throughout development, and the regions with
differential accessibility represent cis-regulatory hubs driving the
biological processes associated with differentiating CMs.

Modules of coregulated genes represent subnetworks under-
lying specific biological processes associated with heart develop-
ment. Further integration of these networks with ATAC-seq data
allowedus to link TFs to their putative target genes, whichwas sup-
ported by the enrichment of DNA binding motif for specific TFs
within NFRs in proximal promoters of the genes within each
particular module. Collectively, our analyses of the regulatory net-
works and their representative expression patterns revealed
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Figure 6. Identification of putative cardiac enhancers. (A) A volcano plot of differentially accessible distal NFRs between wild-type and TF mutants at 72
hpf. Adjusted P-value≤0.05 are indicated in green, the numberof down-regulatedNFRs is indicated in blue, and up-regulatedNFRs in red. (B) Venndiagram
of mutant down- and up-regulated distal NFRs (more than ±3 kb of TSS); adjusted P-value≤0.05. (C) Graphical representation of differentially accessible
distal NFRs genomic localization onto zebrafish chromosomes. NFRs overlapping with HCNE (±500 bp) and their accessibility log2FC in comparison to
wild type is indicated; adjusted P-value < 0.05. (D) Genome track of ATAC-seq peaks for wild type (black), tbx5a−/− (green), and gata5−/− (blue) for the
three most down-regulated NFRs overlapping with HCNE (±500 bp). (E) Genome track of ATAC-seq peaks for wild type (black), hand2−/− (pink), and
gata5−/− (blue) of the three most up-regulated NFRs overlapping with HCNE (±500 bp).
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increased expression of genes defining CM structure and function,
whereas the expression and proximal promoter chromatin accessi-
bility of hematopoietic genes were suppressed during CMdifferen-
tiation. Sorted GFP-positive cells also expressed hematopoietic
determinants at the earliest stage observed (24 hpf). These were
grouped into a single expression module (brown) and correlated
between gene expression dynamics and chromatin accessibility
in proximal promoters that decreased between 24 and 48 hpf.
One explanation is that the expression of hemato-vascular genes
was contributed by cells giving rise to the pharyngeal arch meso-
derm which also express nkx2.5 used as our selection marker.
Another equally plausible hypothesis is that a group of cells that
possess alternative potential to become the blood or vascular line-
age exist within the pool of CM progenitors. Numerous evidences
from mouse studies suggested the presence of bipotential cardiac
progenitor populations which coexpressed cardiac and hemato-
poietic markers in the developing heart tube (Caprioli et al.
2011; Nakano et al. 2013; Zamir et al. 2017). To distinguish be-
tween these possibilities, it would be necessary to obtainmolecular
profiles of individual cells to determine whether hemato-vascular
progenitors exist as a separate population expressing specificmark-
ers or rather, as a common progenitor population expressing both
CM and hemato-vascular markers. This also highlights the limita-
tions of currently available marker genes and calls for higher reso-
lution analyses of gene expression in specific cell types, which is
possible with the single cell sequencing technology.

Finally, comparing wild-type CMs to that of Gata5, Hand2,
and Tbx5 mutants, we observed only a minor correlation between
changes in gene expression and chromatin accessibility within
proximal promoter NFRs, suggesting that transcriptional regula-
tion of genes involved in heart development might be affected
by distal regulatory elements. Alternatively, changes in gene ex-
pression betweenwild-type and TFmutants could be related to im-
paired TF binding to constitutively accessible proximal NFRs.
Because we could only perform mutant analyses at 72 hpf , we
could not rule out the possibility of observing secondary effects
arising from changes in earlier developmental stages. Moreover,
the lack of chromatin interaction data prevents the inference of de-
finitive associations between distal regulatory elements and their
target genes. Regardless, we identified a substantial number of
gene-distal-located NFRs that were altered in accessibility in mu-
tants that may serve as potential distal transcriptional regulatory
elements, some of whichwere highly conserved between zebrafish
and human, suggesting that they might be critical developmental
enhancers (Polychronopoulos et al. 2017).

Altogether, we characterized the dynamics of gene expression
and chromatin landscape during heart development and identi-
fied genetic regulatory hubs driving biological processes in CMs
at different stages of heartmorphogenesis.We elucidated the alter-
ations in global transcriptional regulatory landscape resulting
from disruptions to the developmental program caused by the
loss of cardiac TFs. Collectively, our study identified potential tar-
get genes and regulatory elements implicated in heart develop-
ment and disease.

Methods

CM collection by fluorescence-activated cell sorting (FACS)

Zebrafish transgenic lines Tg(nxk2.5:EGFP), Tg(myl7:EGFP) in AB
wild type and gata5tm236a/+ (Reiter et al. 1999), tbx5am21/+

(Garrity et al. 2002), hand2s6/+ (Yelon et al. 2000) mutant back-

ground were maintained in the International Institute of Mole-
cular and Cell Biology (IIMCB) zebrafish facility (License no.
PL14656251) according to standard procedures. Cell suspension
was prepared from 500 embryos and larvae as previously described
(Winata et al. 2013), omitting the fixation step and directly
resuspending cells in FACSmax Cell Dissociation Solution (AMS
Biotechnology) for cell sorting. Fluorescent (GFP+) andnonfluores-
cent cells (GFP−) were sorted by using FACSAria II cytometer (BD
Biosciences).

qPCR

Total RNAwas extracted from 100,000 GFP+ and GFP− cells using
TRIzol LS (Thermo Fisher Scientific) according to the manufactur-
er’s protocol and followed by DNase I (Life Technologies) treat-
ment. Transcriptor first strand cDNA synthesis kit (Roche Life
Science) was used to obtain cDNA. Relative mRNA expression
was quantified by using FastStart SYBR Green master mix on the
Light Cycler 96 instrument (Roche Life Science) with specific
primer sets (Supplemental Table 12).

RNA-seq

For RNA-seq, 100,000 GFP+ and GFP− cells were sorted directly to
TRIzol LS (Thermo Fisher Scientific). cDNA synthesis for next-gen-
eration sequencing (NGS) was performed by SMARTer Universal
Low Input RNA Kit (Clontech Laboratories) as recommended by
themanufacturer. Paired-end sequencing (2 ×75 bp reads) was per-
formed with NextSeq 500 (Illumina). Pearson correlation of bio-
logical replicates and read distribution over zebrafish genome
features were performed (Supplemental Fig. 6A,B).

Assay for transposase-accessible chromatin with high-throughput

sequencing (ATAC-seq)

For ATAC-seq, 60,000GFP+ cells from zebrafish embryoswere sort-
ed toHank’s solution (1×HBSS, 2mg/mLBSA, 10mMHEPES at pH
8.0), centrifuged for 5min at 500g, andprepared for chromatin tag-
mentation as previously described (Buenrostro et al. 2015). Paired-
end sequencing (2 ×75 bp reads) was performed with NextSeq 500
(Illumina).

Light sheet fluorescence microscopy (LSFM)

Embryos were maintained in medium containing 0.003% 1-phe-
nyl-2-thiourea. For LFSM (Zeiss), embryos were collected and
mounted in 1% low-melting agarose (Sigma-Aldrich). Images
were analyzed with Imaris 8 software (Bitplane).

Bioinformatics analysis

Raw RNA-seq and ATAC-seq reads were quality checked using
FastQC (0.11.5) (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Adapters were removed using Trimmomatic
(0.36) (Bolger et al. 2014). Reads matching ribosomal RNAwere re-
moved using rRNAdust (Hasegawa et al. 2014). Reads quality filter-
ing was performed using SAMtools (1.4) (Li et al. 2009). RNA-seq
reads were aligned to the zebrafish reference genome (GRCz10) us-
ing STAR (2.5) (Supplemental Fig. 7; Dobin et al. 2013). Bowtie 2
(2.2.9) (Langmead and Salzberg 2012) was used to map ATAC-seq
reads to the GRCz10 genome (Supplemental Fig. 8). Read distribu-
tion was assessed with Picard (2.10.3). NFR regions were identified
aspreviouslydescribed (Buenrostro et al. 2013). Peaksof openchro-
matin regions were called usingMACS2 (2.1.0) (Zhang et al. 2008).
Enrichedmotifs inNFRswere identified usingHOMER (Heinz et al.
2010). Downstream bioinformatics analysis were performed in R
3.4 using following Bioconductor and CRAN (Huber et al. 2015)
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packages as indicated in Supplemental Data. RNA-seq gene counts
and ATAC-seq NFR read counts for all samples were transformed to
regularized log (rld) (Supplemental Tables 13, 14). Differentially ac-
cessible ATAC-seq peakswere quantified byDESeq2 (Supplemental
Table 15). Gene network visualization and statistical analysis of
gene networks was performed using Cytoscape (Cline et al.
2007). Metascape was used to visualize the output of GO enrich-
ment analysis (Tripathi et al. 2015).

Data access

RNA-seq and ATAC-seq data from this study have been submitted
to the NCBI Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) under accession number GSE120238.
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Multi-omics analyses of early liver injury 
reveals cell-type-specific transcriptional 
and epigenomic shift
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Abstract 

Background: Liver fibrosis is a wound-healing response to tissue injury and inflammation hallmarked by the extra-
cellular matrix (ECM) protein deposition in the liver parenchyma and tissue remodelling. Different cell types of the 
liver are known to play distinct roles in liver injury response. Hepatocytes and liver endothelial cells receive molecular 
signals indicating tissue injury and activate hepatic stellate cells which produce ECM proteins upon their activation. 
Despite the growing knowledge on the molecular mechanism underlying hepatic fibrosis in general, the cell-type-
specific gene regulatory network associated with the initial response to hepatotoxic injury is still poorly characterized.

Results: In this study, we used thioacetamide (TAA) to induce hepatic injury in adult zebrafish. We isolated three 
major liver cell types - hepatocytes, endothelial cells and hepatic stellate cells - and identified cell-type-specific chro-
matin accessibility and transcriptional changes in an early stage of liver injury. We found that TAA induced transcrip-
tional shifts in all three cell types hallmarked by significant alterations in the expression of genes related to fatty acid 
and carbohydrate metabolism, as well as immune response-associated and vascular-specific genes. Interestingly, 
liver endothelial cells exhibit the most pronounced response to liver injury at the transcriptome and chromatin level, 
hallmarked by the loss of their angiogenic phenotype.

Conclusion: Our results uncovered cell-type-specific transcriptome and epigenome responses to early stage liver 
injury, which provide valuable insights into understanding the molecular mechanism implicated in the early response 
of the liver to pro-fibrotic signals.

Keywords: Liver, Hepatocytes, Stellate cells, Endothelial cells, Chromatin, Transcriptomics, ATAC-seq, RNA-seq, 
Genomics, Epigenomics, Zebrafish
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Background
Liver injury is a rising public health concern, especially in 
European and North American countries. Its increasing 
prevalence leads to an expanding body of work regard-
ing the molecular mechanisms present in advanced liver 
disease, however our knowledge about the earliest stages 
of liver injury is still limited. Liver injury is manifested by 
the formation of fibrous tissue as a result of ECM deposi-
tion at the site of injury [1]. Progressive fibrous scar for-
mation may distort normal liver structure by formation 
of septa and nodules of regenerating hepatocytes (HEPs) 
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leading to impaired portal blood flow and formation of 
cirrhotic architecture [2]. Liver cirrhosis is the end-stage 
of hepatic fibrosis affecting about 0.1% of the European 
population [1]. The most serious outcome of cirrhosis is 
hepatocellular carcinoma (HCC), constituting 70-90% of 
cases of primary liver cancer [1]. The predominant causes 
of liver fibrosis are chronic excessive alcohol consump-
tion, viral hepatitis B and C and non-alcoholic fatty liver 
disease (NAFLD), the latter becoming a major concern 
with the increasing incidence of obesity in Europe and 
the USA [1].

Liver parenchymal cells, HEPs, are the most abundant 
cell subpopulation in this organ in mammals, constitut-
ing ca. 85% of the total liver cell mass [3]. Under physio-
logical conditions, HEPs are responsible for a wide range 
of functions, including carbohydrate, fatty acid and pro-
tein metabolism as well as immune response [3]. Upon 
liver damage, HEPs are a source of reactive oxygen spe-
cies, pro-inflammatory signals as well as cytokines, tak-
ing part in the activation of repair pathways [3].

Hepatic stellate cells (HSCs) comprise 8% of the total 
liver cell population [4]. Under normal physiological 
conditions, these mesenchymal cells reside in the space 
of Disse, maintaining a quiescent state, storing vitamin 
A in cytoplasmic lipid droplets [5]. Upon liver damage, 
HSCs are activated and transdifferentiate into myofibro-
blast-like cells. Their activation is triggered by multiple 
autocrine and paracrine signals, such as transforming 
growth factor (TGFβ), SMAD3, protein platelet-derived 
growth factor receptor (PDGF), vascular endothelial 
growth factor (VEGF) and connective tissue growth fac-
tor (CTGF) [6]. In an active state, HSCs are the primary 
ECM-producing cell population, resulting in the creation 
of a temporary scar tissue at the damaged site. Active 
HSCs produce cytokines and growth factors, promoting 
liver regeneration. In chronic liver disease, however, the 
reoccurring HSC activation may result in permanent scar 
formation, resulting in sections of non-functional liver 
tissue [5].

Endothelial cells in the liver are found mainly lining 
the inner walls of the sinusoidal blood vessels (liver sinu-
soidal endothelial cells - LSECs). LSECs are highly spe-
cialized, forming a permeable barrier by virtue of their 
fenestrae, between hepatocyte membranes and blood 
vessel lumen. The presence of fenestrae, combined with 
the absence of a basement membrane, contribute to mak-
ing the LSECs the most endocytosis-capable cell popula-
tion in the human body [7]. LSECs regulate the tone of 
hepatic blood vessels and maintain the quiescent state of 
HSCs [7].

In response to chronic hepatotoxic injury, various 
molecular and cellular factors interact with HEPs and 
LSECs, leading to sequential activation of HSCs [8]. This 

in turn initiates the perpetuation phase, hallmarked by 
proliferative, contractile and inflammatory phenotype 
characterized by increased production of ECM proteins 
including collagens, fibronectin, decorin, elastin and pro-
teoglycans [2, 9]. The understanding of molecular mecha-
nisms of hepatic fibrosis has markedly increased due to 
the availability of liver fibrosis models such as cell cul-
ture systems, rodent model systems and biopsied human 
material [10]. However, our knowledge of cell-type-spe-
cific gene regulatory networks and epigenetic hallmarks 
associated with the initial response to hepatotoxic injury 
is still lacking, mainly due to the challenges of studying 
cell interactions and their behaviour in a living organ-
ism. Such knowledge is crucial for accurate diagnosis and 
development of new therapeutic approaches targeting 
liver fibrosis and related disorders.

The zebrafish (Danio rerio) has emerged as a useful 
model organism for studying the mechanism of liver dis-
ease in vivo, both in larvae and adult individuals [11–13]. 
Despite the distinct architecture between mammalian 
and zebrafish liver, they contain similar main cell types, 
including HEPs, endothelial cells (ECs) and HSCs, with 
conserved function and gene expression profiles [5, 14, 
15]. To dissect the molecular mechanisms regulating the 
initiation of hepatic fibrosis and understand the interplay 
between genetic and epigenetic signals in this process, we 
utilized the model of thioacetamide-induced liver injury 
in adult zebrafish and characterized cell-type-specific 
changes at both transcriptome and epigenome level in 
three main liver cell types. Thioacetamide (TAA) is a 
potent hepatotoxin that has been widely used to induce 
acute and chronic liver injury in rodent models [16–18]. 
There is a wide variation in the administration routes and 
time of exposure between studies, but most commonly a 
regimen of intraperitoneal injections of 100-200 mg/kg of 
body mass 2-3 times per week for over 6 weeks has been 
used to induce liver fibrosis and cirrhosis [19]. TAA has 
also been utilized to induce liver injury in zebrafish lar-
vae, establishing it as a model for steatohepatitis [13]. The 
larvae used in the cited study were exposed to 0.025% 
TAA for 10 days starting at 72 h post-fertilization (hpf), 
when the embryonic liver becomes functional. At 5 days 
post-fertilization the embryos exhibited molecular mark-
ers of apoptosis and steatohepatitis, which continued 
until the end of the treatment. TAA has also been used 
in juvenile zebrafish, where intraperitoneal injections of 
300 mg/kg b.m. three times a week induced steatosis [20].

We employed three transgenic zebrafish lines 
to isolate the respective cell populations: HEPs 
(Tg(fabp10a:dsRed)), HSCs (Tg(hand2:EGFP)), and ECs 
(Tg(kdrl:ras-mCherry)). We implemented a machine 
learning technique known as self-organizing maps 
(SOMs) to generate whole genome expression profiles 
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of both physiological state and early response to liver 
injury from the three studied cell types [21]. The inte-
gration of this data with genome-wide open chromatin 
maps (ATAC-seq) from corresponding samples allowed 
to uncover specific gene and chromatin signatures of the 
studied cell populations. Our analysis revealed that early 
response of the liver to pro-fibrotic signals is manifested 
in cell-type specific transcriptome and epigenome rear-
rangements and identified molecular hallmarks of this 
process. This work provides a step towards understand-
ing the initial stages of liver injury and may serve as a 
resource for further investigation aimed at developing 
new diagnostic and treatment tools.

Results
Identification of liver cell‑type‑specific transcriptional 
portraits under normal physiological condition
In order to characterize the molecular profiles rep-
resenting the HEPs, HSCs, and ECs under physi-
ological conditions, we utilized three transgenic lines 
Tg(fabp10a:dsRed), Tg(hand2:EGFP) and Tg(kdrl:Hsa.
HRAS-mCherry) which express red (dsRed, mCherry) 
or green fluorescent proteins (GFP) in the correspond-
ing cell types [14, 22, 23]. Whole livers were dissected 
from adult zebrafish from each of the transgenic lines 
used in this study (Fig.  1A). Fluorescent microscopy of 
liver from the corresponding transgenic lines confirmed 
the fluorescence observed in the corresponding cell types 
(Fig.  1B). We prepared cell suspensions and performed 
FACS according to previously established protocols (See 
Methods, Supp. Fig.  1). The number of RNA-seq reads 
corresponding to fluorescent reporters specific to each 
cell-type (Fig.  1B) was strongly enriched in fluorescent-
positive samples, which confirmed the purity of FACS 
isolated samples (Fig. 1C). In order to ascertain the cell-
type gene signatures, we performed differential expres-
sion comparisons between samples and identified the 
most enriched genes in each cell type (Fig.  2A, Supp. 
Table  2). The largest number of cell-specific genes were 
found in ECs (4553), then in HSCs (380) and in HEPs 
(126) (Supp. Table 2). These included known cell-specific 
markers for ECs (sox18 [24], sele [25], flt1 [26]) and HEPs 
(soat2 [27]) (Fig.  2B). On the other hand, genes related 
to fatty acid metabolism (fasn [28], fat3b, hmgcra [29], 
hmgcs1 [30], elovl4a [31]) and cholesterol biosynthesis 
(cyp51, sc5d, hmgcra, msmo1, nsdhl, hmgcs1, dhcr7) were 
upregulated in HSCs which are known to contain vita-
min A lipid droplets [32] (Supplementary Table 2). Gene 
ontology (GO) analysis revealed the enrichment of genes 
related to angiogenesis in ECs, insulin-like growth fac-
tor receptor signalling genes and cellular phosphate ion 
homeostasis in HEPs and lipid transport and metabolism 
genes in HSCs (Fig. 2C). Taken together, the enrichment 

of known markers and the relevant GO terms in ECs, 
HEPs, and HSCs support the identity of the respective 
cell types.

TAA metabolism is reflected in the transcriptional shift 
in liver cells
We then sought to determine the transcriptional signa-
tures of early hepatotoxic injury response in each of the 
three liver cell types. We induced liver injury using TAA 
at a concentration of 500 mg/kg of body mass. The short 
term TAA treatment induced mild histological changes 
with observed inflammation (Fig.  1D). We then col-
lected whole livers from TAA-treated Tg(fabp10a:dsRed), 
TgBAC(hand2:EGFP) and Tg(kdrl:Hsa.HRAS-mCherry) 
fishes, isolated the corresponding cell types by FACS, and 
performed RNA-seq.

We evaluated cell-type-specific transcriptional 
response to TAA activation by looking at the expres-
sion of genes related to TAA metabolism and genes acti-
vated in response to liver injury and fibrogenesis (Fig. 2D, 
Supp. Table 3). The increased expression of genes related 
to cell redox homeostasis such as catalase (cat) [33], 
cytochromes (cyp2y3, cyp2p6) [34], superoxide dis-
mutase 2 (sod2) [34], glutathione peroxidase 1a (gpx1a) 
[35] was observed in response to TAA, with the most 
striking response in ECs. Pro-fibrotic genes [8] includ-
ing ECM proteins such as collagens (col1a1a, col1a2, 
col5a2a, col5a1, col6a3), decorin (dcn) as well as metal-
lopeptidase inhibitor 2a (timp2a), integrin alpha V (itgav) 
and annexin 5b (anxa5b) were specifically upregulated in 
HSCs, in response to TAA (Fig. 2D).

TAA induces transcriptional reprogramming of hepatic 
endothelial cells
To provide a global view of the behaviour of correlated 
gene clusters in three hepatic cell types in response to 
TAA, we used self-organizing map based tool oposSOM 
R package [36]. The tool first constructed transcriptional 
portraits of all the samples, then a second unsupervised 
reduction step was performed, further reducing dimen-
sionality to overexpression spots representing clusters 
(A-H, Supp. Table  4) of co-expressed metagenes which 
are highly expressed in, at minimum, one condition 
(Fig.  3A, B) [37]. To link overexpression with gene set 
overrepresentation in a sample- and spot-specific way, 
we visualized the metagene expression across samples 
on the heatmap (Fig.  3C) and performed the gene set 
overrepresentation analysis (Fig.  3D, E; Supp. Table  5). 
The gene expression portraits of both control and TAA-
treated samples from each of the three cell types revealed 
that short-term TAA exposure induced strong changes in 
genome-wide expression landscapes between cell types 
in physiological state and upon TAA activation (Fig. 1E, 
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F). Interestingly, the most striking changes induced by 
TAA treatment were observed in ECs (Fig. 1G).

Analysis of the SOM clusters in ECs revealed an 
increase in expression of genes related to metabolic and 
redox processes as well as cellular transport (Fig. 3C, D 
- clusters B and F). We also observed downregulation of 

genes related to vasculature development as well as acti-
vation of immune response in ECs after treatment with 
TAA (Fig. 3C, D - clusters G and H; Supp. Fig. 6).

In HEPs, TAA treatment induced an increase in the 
expression of gene sets associated with regulation of 
metabolic processes, namely carboxylic acid and hydroxy 

Fig. 1 Transcriptional portraits of liver cells in response to TAA. a A scheme of the study. Adult transgenic zebrafish lines were treated with 
TAA (500 mg/kg) or control (saline) three times per week for 2 weeks. Livers were removed and fluorescent-positive cells were sorted by FACS. 
RNA-seq and ATAC-seq libraries were performed from sorted cells; b Transgenic zebrafish liver cryosection micrographs visualizing ECs (Tg(kdrl:Hsa.
HRAS-mCherry)), HSCs (TgBAC(hand2:EGFP)) and HEPs (Tg(fabp10a:dsRed)) as indicated on the figure legends; c Number of transgene BLAST hits from 
fluorescent-negative and positive cells from transgenic zebrafish lines; d Microscopic images of histological H&E sections of control and TAA-treated 
animals indicating inflammation loci (arrowheads) and extracellular lipid droplets (asterisks); e Portraits of co-regulated over- or underexpressed 
metagenes as red and blue spots, respectively. The color gradient of the map visualizes over- and underexpression of the metagenes compared 
with the mean expression level in the pool of all samples studied; f Sample pairwise Pearson correlation heatmap on the clustered data; g 
Independent Component Analysis on clustered data

Fig. 2 Liver cell signatures in quiescent and activated state. a Number of identified cell type specific genes at quiescent state in each cell 
type, logFC > 0, padj < 0.05; b Heatmaps of top 25 cell type specific genes at quiescent state in each cell type, logFC > 0, padj < 0.05; c GO 
over-representation analysis of identified cell type specific genes at quiescent state in each cell type; d Volcano plot of selected genes, involved in 
liver fibrosis and response to oxidative stress, under TAA treatment

(See figure on next page.)
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Fig. 2 (See legend on previous page.)



Page 6 of 15Migdał et al. BMC Genomics          (2021) 22:904 

compound metabolism, as well as intra- and intercellu-
lar transport when compared to their control counter-
parts (Fig.  3C, D - cluster B). In contrast, we observed 
a decreased expression of gene sets associated with the 
formation and function of endoplasmic reticulum as well 
as negative regulation of various growth binding factors 
(Fig. 3C, D - clusters E and G). We also observed a rela-
tive reduction of expression of genes associated with the 
G2/M cell cycle transition in TAA-treated HEPs (Fig. 3C, 
D - cluster D; Supp. Fig. 5).

Modest changes in gene expression were observed in 
HSCs. Analysis of clusters revealed that upregulated gene 
sets were associated with extracellular space and struc-
ture organization as well as protein hydrolysis (Fig.  3C, 
D - cluster A), which reflects the known role of HSCs in 
ECM formation during liver damage response [9]. Con-
versely, we observed downregulation of genes associated 
with G2/M cell cycle transition, endoplasmic reticulum, 
estrogen response and immune activation (Fig.  3C, D - 
clusters G and H).

Altogether, cell-type-specific transcriptome profile 
revealed transcriptional response to short term TAA 
exposure. All of the analyzed cell types were subject 
to TAA-induced transcriptional shifts, with the high-
est change observed in ECs. These were hallmarked by 
decrease of vascular-specific genes and the increase of 
fatty acid and carbohydrate metabolism genes as well as 
in immune response-associated genes.

TAA leads to genome‑wide changes in chromatin 
regions enriched in binding sites for transcription factors 
regulating fatty acid metabolism and angiogenesis
Epigenetics has been acknowledged as an important 
player in liver fibrosis and regeneration [38–40], with a 
prospect of the development of epigenetic biomarkers 
and therapies. To investigate this aspect of liver damage, 
we ask whether epigenetic changes are involved in the 
earliest stages of liver fibrosis. To determine whether and 
to what extent epigenetic landscape in each liver cell type 
is altered during early stage liver injury, we characterized 

Fig. 3 Functional characterization of overexpression spots landscape. a Overexpression spots landscape. Logged expression values of each gene 
were transformed into differential expression values relative to the mean expression of the particular gene in the experimental series of samples 
considered. Overexpression spots are coloured in red; b Overexpression spots annotation to clusters from A to H; c Mean overexpression spots 
expression across samples; d Gene sets enrichment analysis on the clustered data. Overrepresentation p-values for each cluster are provided; e 
Meta-analysis of gene set enrichment performed by Metascape. Only significantly enriched terms are shown (padj < 0.05)
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the changes in chromatin accessibility in HEPs, HSCs, 
and ECs upon TAA treatment.

We observed that in TAA-treated animals the most 
significant changes in chromatin state compared to con-
trol were observed in ECs, followed by HSCs and HEPs 
(Fig.  4A, B). ATAC-seq peaks distribution across the 
genome showed that the highest fraction of peaks (30-
40%) was localized in the promoter (+/− 3 kb) regions 
(Fig.  4C, Supp. Table  7). Interestingly, the most signifi-
cant changes in chromatin accessibility was observed in 
ECs, with the largest number of upregulated peaks found 

within the promoters of genes in clusters B (440 peaks) 
and F (74 peaks) and downregulated peaks in clusters G 
(120 peaks) and H (113 peaks) (Fig.  5A). The observed 
changes in chromatin accessibility correlates with 
changes observed in the transcriptional levels of genes 
within the corresponding clusters (increase in clusters B 
and F, and decrease in clusters G and H) (Fig.  4D). On 
the other hand, modest changes in chromatin accessibil-
ity were observed in the other two cell types. In HEPs, 
the highest change was observed in cluster B (30 up- 
and 18 downregulated). In HSC, 62 and 7 peaks were 

Fig. 4 Chromatin accessibility maps of liver cells. a Principal component analysis of ATAC-seq peaks across cell types and conditions; b Sample 
pairwise Pearson correlation heatmap of chromatin accessibility in ATAC-seq peaks across cell types and conditions; c ATAC-seq peak distribution 
across genomic categories; d Coverage heatmaps of ATAC-seq peaks localized in the promoters (− 3 to + 3 kb from TSS) of SOM clusters
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upregulated or downregulated in cluster B, respectively 
and 39 downregulated in cluster H.

To identify potential regulators involved in TAA 
response in each cell type, we searched for transcrip-
tion factor (TF) motifs enriched in differentially accessi-
ble promoter peaks from SOM cluster genes (Fig. 5B-D, 
Supp. Table  6). Significant enrichments (p-adjusted 
< 0.05, Supp. Table  6) were identified predominantly 
in five tested groups of regions: cluster B upregulated 
regions in ECs and HSCs, cluster G downregulated 
regions in ECs and cluster H downregulated regions in 
ECs and HSCs. In ECs, we observed significant enrich-
ment in motifs of fatty acid metabolism nuclear recep-
tors such as RXR [41], THRB [42], HNF4A [43] and 
PPARA [41] among peaks upregulated in cluster B. This 
is in accordance with the result of gene set overrepresen-
tation analysis (Fig. 3D). A drop in chromatin accessibil-
ity was observed for ECs peaks located in the promoter 
of genes from cluster G. TFs motifs identified in this 

cluster belong to ETS family (ETV2, ERG, SPDEF, ETS1) 
and Sox family (Sox6, Sox17, Sox3) involved in cell dif-
ferentiation, migration and proliferation [44–46]. In 
HSCs, we found enriched motifs of TFs involved in cel-
lular glucose homeostasis such as FOXA3 [47], FOXK1 
[48], FOXK2 [49] and cell differentiation such as RARA, 
TR4, FOXA1, FOXA3 [50]. In cluster H downregulated 
regions, both in EC and HSC, we also found enriched 
motifs of ETS family including ETV2, ERG, ELF5, 
ELF3, ETS1, EHF, SPIB, ELF4. Additionally, in HSCs 
we found enrichment of ATF4 and Chop motifs, which 
are known to be involved in response to endoplasmic 
reticulum stress [51, 52]. Notably, ETS TFs also regulate 
endothelial function and homeostasis [53]. Altogether, 
our results show increased chromatin accessibility in 
the promoter regions of gene clusters associated with 
fatty acid metabolism, especially in ECs, and decrease of 
accessibility in clusters related to endothelial homeosta-
sis and inflammatory response.

Fig. 5 TF motif enrichment in response to pro-fibrotic stimuli. a Metrics of differential promoter peaks (− 3 to + 3 kb from TSS) in SOM clusters; b 
Homer motif enrichment analysis in ECs differential peaks; c Homer motif enrichment analysis in HEPs differential peaks; d Homer motif enrichment 
analysis in HSCs differential peaks. Only enriched motifs with p-adjusted < 0.1 are shown



Page 9 of 15Migdał et al. BMC Genomics          (2021) 22:904  

ECs exhibit the highest gene regulatory response 
to TAA‑induced liver injury
To further investigate cell type specific responses to TAA 
treatment we examined the character of promoter acces-
sibility change in clusters most specific to each cell type. 
These included clusters B, G and H in ECs and cluster 
A in HSCs. In cluster B we observe the tendency in ECs 
towards increase in promoter accessibility upon treat-
ment (Fig. 4D and Supp. Fig. 3B) combined with increase 
in expression (Fig. 3C). Among the genes that increase in 
accessibility, we focused on those that exemplify the larg-
est gain in accessibility by selecting the top 25th percen-
tile of change in accessibility and lower 25th percentile of 
read counts in the control sample (Fig. 6A). Among those 

were homologs of known human liver fibrosis mark-
ers such as Apolipoprotein A-IV [54] or Fibulin-5 [55] 
(Fig. 6C, D). In clusters G and H we observe a decrease in 
promoter accessibility (Fig. 4D, Supp. Fig. 3C, D) accom-
panied by reduced gene expression (Fig.  3C). To select 
genes with the most prominent loss of accessible regions 
in their promoter after treatment, we examined differ-
entially accessible regions in the lower 25th percentile in 
terms of accessibility change and upper 25th percentile in 
read counts in the control sample (Fig. 6B, Supp. Fig. 4A). 
Among such genes in cluster G were EC marker kdrl and 
known vascular endothelial regulator etv2 [56] (Fig.  6E, 
Supp. Fig. 4C). In contrast, a limited number of changes 
were observed in promoter accessibility of HSCs in 

Fig. 6 Cell type specific accessibility changes in response to TAA treatment in selected cell types and clusters. a Heatmap of selected genes in each 
cell type. Genes were selected based on accessibility patterns in cluster B; b Heatmap of selected genes in each cell type. Genes were selected 
based on accessibility patterns in cluster B; c Genomic browser snapshot at apoa4b.1 promoter localization with accessibility track expressed as 
reads per million. Highlighted peak was used as a selection criteria in a., its three most enriched motifs are shown next to the browser track; d 
Genomic browser snapshot at fbln5 promoter localization with accessibility track expressed as reads per million. Highlighted peak was used as a 
selection criteria in a., its three most enriched motifs are shown next to the browser track; e Genomic browser snapshot at kdrl promoter localization 
with accessibility track expressed as reads per million. Highlighted peak was used as a selection criteria in b., its three most enriched motifs are 
shown next to the browser track
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cluster A (Fig. 4D and Supp. Fig. 3A). Among the 5 genes 
within the top 25th percentile of accessibility changes 
and lower 25th percentile of read counts in control were 
col4a6 and elovl1a (Supp. Fig. 4B, D, E).

Discussion
Liver fibrosis is a wound-healing response to tissue injury 
and inflammation hallmarked by the ECM protein depo-
sition in the liver parenchyma and tissue remodelling 
[57]. The predominant causes of liver fibrosis are chronic 
excessive alcohol consumption, viral hepatitis B and C 
and non-alcoholic fatty liver disease (NAFLD), the latter 
becoming a major concern with the increasing incidence 
of obesity in Europe and the USA [1]. While these condi-
tions have been widely studied [1], current knowledge of 
gene regulatory networks and epigenetic hallmarks asso-
ciated with the early response to hepatotoxic injury is still 
lacking. It is crucial to study these primary changes in the 
cell types most affected by injury to improve the tools for 
diagnosis of early liver fibrosis and related disorders. In 
order to dissect the molecular mechanisms regulating the 
initiation of hepatic fibrosis and understand the interplay 
between genetic and epigenetic signals in this process, we 
utilized the model of TAA-induced liver injury in adult 
zebrafish and characterized cell-type-specific changes at 
both transcriptome and epigenome level in three main 
liver cell types: HEPs, HSCs and ECs.

The conservation of many metabolic pathways across 
vertebrate species renders the zebrafish a potent model 
organism in drug discovery studies. It has been exten-
sively used to study liver development and injury [58, 
59], and has been especially useful in establishing vari-
ous toxicity models [60]. Many xenobiotics used to estab-
lish murine models of drug-induced liver injury have 
been found to be as effective in zebrafish, with an added 
advantage of the larvae being suitable for toxicologi-
cal studies at 3 days post-fertilization, when mature liver 
parenchyma can be observed [60]. While the zebrafish 
liver architecture is distinct from its mammalian coun-
terpart, the morphology, localization and gene expres-
sion profiles of HEPs, ECs and HSCs are similar [58, 60, 
61].

The hepatotoxic properties of TAA in mice and rats 
induces oxidative stress resulting first in formation of 
intracellular lipid deposits in the liver parenchymal cells 
(hepatocyte ballooning), and later leading to HEPs dam-
age and necrosis [62]. Bioactivation of TAA into its hepa-
totoxic counterpart,  TASO2 [63], requires proteins from 
the cytochrome p450 complex, functional orthologs 
for many of which exist in zebrafish, including proteins 
with > 44.87% sequence similarity to CYP2E1, the pro-
tein thought to be directly responsible for TAA metabo-
lism in humans [64]. Moreover, CYP2E1 function was 

reproduced in zebrafish tissue homogenates, albeit with-
out identifying the specific enzyme responsible for the 
process [65].

In line with previous reports [5, 66], we observed 
that gene expression profiles of respective cell popula-
tions are similar to those exhibited by their mammalian 
counterparts. Specifically, our sorted cell populations 
were enriched for known cell specific markers and rel-
evant GO terms. These results are in agreement with the 
established existence of conserved molecular pathways 
between species [58]. Moreover, our analysis of cell-
type-specific transcriptional response to TAA treatment 
highlighted known molecular components of the TAA 
metabolism pathway such as elements of the cytochrome 
p450 superfamily (Supp. Table 3). The most striking tran-
scriptional response to TAA was observed in the ECs, 
highlighting those cells as the most affected by the treat-
ment. This is likely a consequence of high permeability 
of ECs and also reflects their driving role in hepatotoxic 
injury response [67]. ECs, particularly LSEC, due to their 
exceptional permeability and intimate contact with the 
blood stream [68], are at the frontline of the toxic stimuli 
sensing. During liver damage, endothelial dysfunction 
occurs at early phases, before fibrosis initiation [69–71], 
under many liver etiologies such as non-alcoholic fatty 
liver disease (NAFLD) and alcoholic liver damage. Some 
evidence shows that LSEC dysfunction occurs before 
other liver injury early markers including Kupffer cell 
activation, nitric oxide content reduction or TNFα, IL-6 
and ICAM-1 up-regulation [67, 70, 72]. To accompany 
their high toxins susceptibility ECs play a regulatory role 
in the liver cellular response to an injuring factor [67]. 
The main target of this regulation are the hepatic stellate 
cells (HSC), but evidence was shown on ECs involvement 
in control of HEPs proliferation [73]. In chronic mod-
els of liver injury, ECs, specifically LSEC, can generate a 
strong immune response and became highly proinflam-
matory, while secreting a vast range of cytokines and 
chemokines including TNF-α, IL-6, IL-1, CCL2 [67]. In 
response to those stimuli as well as the damaging toxin, 
other cells co-participate in the liver cellular response 
regulation. Injured hepatocytes and inflammatory cells 
secrete inflammatory mediators, which further stimulate 
LSEC and the inflammatory response.

To assess TAA-induced transcriptional changes in 
more detail, we applied SOM to identify clusters of co-
expressed genes in our transcriptome data. We found 
eight clusters that showed greatest variability between 
conditions. The largest of these, cluster B, showed high-
est upregulation in response to TAA treatment in ECs. 
Interestingly, this cluster consists of genes related to met-
abolic and redox processes, including 20 members of the 
cytochrome p450 superfamily. This suggests that cluster 
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B represents the set of genes most directly responding 
to TAA treatment. The expression of CYP2E1 in LSECs 
was recently reported in the case of alcohol induced liver 
injury in mice [74]. Moreover, in agreement with the abil-
ity of ECs to regulate neighboring cells, eg. via angiocrine 
factors, we found many genes whose products are known 
to localize in the extracellular space in cluster B. This 
includes Apolipoprotein A-IV which has been recently 
identified as a potent liver fibrosis biomarker [54]. Con-
versely, clusters G and H showed strong downregulation 
upon TAA treatment. Of these, genes involved in extra-
cellular structure organisation (cluster G) showed the 
strongest response in the ECs, while genes involved in 
immune response (cluster H) were commonly downreg-
ulated across all cell types. Contrary to previous reports 
[75, 76], we did not observe an upregulation of extracel-
lular space-associated genes, especially matrix metallo-
proteinase genes (clusters A and C) in HEPs. This may 
be due to the differences in experimental design, as in 
contrast to the cited studies we investigated the earliest 
stages of liver injury. Other possible sources of divergent 
results may be the choice of hepatotoxin, as both cited 
studies employed  CCl4. This result could also highlight 
the differences in model organisms of choice, as the cited 
studies have employed mice, rats and human cell lines.

The observed gene expression upregulation in response 
to treatment is accompanied by increased promoter 
accessibility. In agreement with RNA-seq data, we 
observe the largest chromatin rearrangements in ECs. 
This result suggests that chromatin remodeling is an 
important mechanism driving gene expression response 
to liver injury. Indeed, our motif enrichment analy-
sis identified known motifs of transcriptional activa-
tors, such as the pioneer factors foxa1 and foxa3, to be 
enriched in the regions of increased accessibility. Curi-
ously, the murine homolog of foxa3 has been impli-
cated in promoting liver regeneration [77], while foxa1 
is important for proper liver parenchyma development 
[78]. Changes in promoter accessibility in other cell types 
were less prominent, however the increase in chroma-
tin accessibility was observed in HSCs’ col4a6 promoter 
region upon TAA treatment. This, taken together with 
the increased transcription of ECM genes in both ECs 
and HSCs can suggest that the initiation of ECM remode-
ling driven by both these cell types is triggered by hepatic 
injury.

Conclusions
We induced liver injury using TAA, an established 
potent hepatotoxin, in adult zebrafish. Using this sys-
tem, we identified cell-type specific response to early 
hepatotoxic liver injury at the transcriptomic and 
regulatory level. We demonstrated that in zebrafish, 

the first major liver cell population exposed to hepa-
totoxin - ECs - is also the most affected at both tran-
scriptomic and chromatin accessibility level at this 
stage of liver injury. Importantly, genes known to be 
key players in ECM remodelling as well as metabolic 
and redox processes were observed to be responsive 
to TAA-mediated liver injury, including some which 
undergo chromatin re-arrangement at their promoter 
regions. Besides revealing the global transcriptome 
and epigenome landscape of early liver injury, this 
work provides insight into the molecular processes 
involved in early stages of liver damage. It also prom-
ises the viability of employing approaches providing 
even more specific, in-depth information, such as 
single cell sequencing or long read sequencing. These 
could potentially allow researchers to identify sub-
populations of cells within major cell types that are 
responsible for distinct signals and injury response 
patterns, or assess transcript modifications triggered 
by early liver injury.

Methods
TAA dose‑response assessment
Treatment of adult zebrafish individuals with TAA at a 
concentration of 300 mg/kg b.m. which was previously 
reported for female zebrafish [20] did not result in mor-
phological changes compared to saline-injected controls 
(Supp. Fig.  2), thus suggesting that a higher concentra-
tion of TAA is required to induce liver injury in adult 
fish. In order to establish the optimal TAA concentration 
for adult zebrafish, we first performed a range-finding 
experiment to identify the working dose for zebrafish 
embryos, which we would then use as a guideline for 
establishing the higher dose in adults. By perform-
ing the toxicity assay in embryos instead of adults we 
bypassed the need to sacrifice large numbers of animals. 
Embryos at 48 hpf (n = 18 for each concentration) were 
placed individually in 12-well plates.  5 concentrations 
were tested: 150 mg/l, 375 mg/l, 750 mg/l, 1500 mg/l 
and 3750 mg/l. The TAA solution was changed every 
24 h for 72 h, at which point the embryo survival was 
estimated. A control group for each concentration was 
kept in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM 
 CaCl2, 0.33 mM  MgSO4) and changed every 24 h for the 
duration of the experiment. We found that treatment 
of embryos with 1500 mg/l of TAA for 72 h resulted in 
~ 50% mortality, thereby approximating the embry-
onic LC50 for TAA at this concentration. To ensure an 
adequate amount of TAA delivered to the adult liver, we 
adopted the intraperitoneal injection strategy repeated 6 
times over the span of 2 weeks, with a dose of 500 mg/kg 
of body mass per injection.
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TAA administration and isolation of liver cell populations 
by fluorescence‑activated cell sorting (FACS)
Zebrafish transgenic lines Tg(fabp10a:dsRed), 
Tg(hand2:EGFP) and Tg(kdrl:ras-mCherry) in AB 
wild-type background were maintained in the IIMCB 
zebrafish facility (License no. PL14656251) according 
to standard procedures. Adult females were anesthe-
tized with MS-222 (Sigma-Aldrich, Germany) as pre-
viously described [79] and injected intraperitoneally 
with 500 mg/kg thioacetamide (TAA) or sterile water 
as a control 6 times over the course of 2 weeks. A single 
dose of TAA would not approach the estimated LC50 
for embryos, but the overall exposure to the toxin would 
exceed the estimated LC50. Adult fish weighing less than 
2 g prior to the injections were excluded due to welfare 
concerns. Prior to toxin administration, the injection 
spot was wiped down with 1% povidone iodine to fur-
ther limit the risk of infection. Overall, 15 fishes were 
injected with TAA. An additional 6 were injected with 
saline as a control. Fishes injected with TAA survived 
to the end of the 2-week treatment with 20% mortal-
ity (n surviving = 12). All saline-injected fishes survived 
the procedure. Experimental protocol for the treatment 
of animals in this study follows the guidelines approved 
by First Warsaw Local Ethics Committee for Animal 
Experimentation (file 15/2015). Livers were dissected and 
digested in Hank’s solution (1× HBSS, 2 mg/mL BSA, 
10 mM Hepes pH 8.0) containing 0.05% trypsin (Sigma-
Aldrich, Germany) and 2% collagenase (Sigma-Aldrich, 
Germany). Cell suspension was centrifuged at 500 g for 
10 min at 4 °C. Cell pellet was resuspended in FACSmax 
(Amsbio, UK) and passed through a sterile 0.22 μm cell 
strainer (VWR, USA). Fluorescent cells were sorted by 
using FACSAria II cytometer (BD Biosciences, USA).

RNA‑seq
For RNA sequencing 100,000 fluorescent liver cells were 
sorted directly to TRIzol LS (Thermo Fisher Scientific, 
USA). After ethanol precipitation RNA was depleted of 
DNA by using DNase I treatment and purified on col-
umns by using RNA Clean & Concentrator™-5 (Zymo 
Research, USA). RNA integrity was measured by RNA 
ScreenTape on the Agilent 2200 TapeStation system (Agi-
lent Technologies, USA). RNA Integrity Number (RIN) 
was in the range from 8.5 to 10 for all the samples used 
for RNA-seq. Ribosomal RNA removal from 10 ng of 
total RNA was performed using RiboGone Kit (Clontech 
Laboratories, USA). cDNA synthesis for next-generation 
sequencing (NGS) was performed by SMARTer Univer-
sal Low Input RNA Kit (Clontech Laboratories, USA) 
as recommended by the manufacturer. DNA libraries 
were purified with Agencourt AMPure XP PCR purifica-
tion beads (Beckman Coulter, USA) and DNA fragment 

distribution was assessed by using D1000 ScreenTape 
and Agilent 2200 TapeStation system (Agilent Technolo-
gies, USA). KAPA library quantification kit (Kapa Biosys-
tems, USA) was used for qPCR-based quantification of 
the libraries obtained. Paired-end sequencing (2 × 75 bp 
reads) was performed with NextSeq 500 sequencing sys-
tem (Illumina, USA).

ATAC‑seq
For ATAC-seq 60,000 fluorescent liver cells were sorted 
to Hank’s solution (1× HBSS, 2 mg/mL BSA, 10 mM 
Hepes pH 8.0), centrifuged for 5 min at 500×g and 
prepared for chromatin tagmentation as previously 
described [80]. NEBNext High-Fidelity 2 × PCR Master 
Mix (New England Biolabs, USA) and custom HPLC-
purified primers containing Illumina-compatible indexes 
were used to prepare DNA sequencing libraries as pre-
viously described [81]. DNA libraries were purified with 
Agencourt AMPure XP PCR purification beads (Beck-
man Coulter, USA) and DNA fragment distribution 
was assessed by using D1000 ScreenTape and Agilent 
2200 TapeStation system (Agilent Technologies, USA). 
KAPA library quantification kit (Kapa Biosystems, USA) 
was used for qPCR-based quantification of the libraries 
obtained. Paired-end sequencing (2 × 75 bp reads) was 
performed with NextSeq500 sequencing system (Illu-
mina, USA).

Bioinformatics analysis
Raw RNA-seq and ATAC-seq reads were quality checked 
using Fastqc (0.11.8). Adapters were removed using Cut-
adapt (1.18) [82]. RNA-seq reads matching ribosomal 
RNA were removed using rRNAdust [83] and remain-
ing reads were aligned to the zebrafish reference genome 
(GRCz11) using STAR (2.6) [84]. ATAC-seq reads were 
aligned to the zebrafish reference genome (GRCz11) 
using Bowtie2 (2.3.4.3) [85]. Reads quality filtering was 
performed using SAMtools (1.9) [86]. Read and align-
ment quality reports were prepared in Multiqc (1.6). To 
identify nucleosome free regions (NFRs) ATAC-seq reads 
originating from fragments not longer than 128 bp were 
retained and shifted by + 4 / -5 bp depending on the 
alignment strand using alignmentSieve utility from deep-
Tools suite (3.2.0) [87]. Those reads were further used for 
peak calling using Macs2 (2.1.0.2) [88] subcommands. 
Shortly for each of the three replicates per base enrich-
ment p-value track was calculated using the Poisson test. 
Then p-values tracks from replicates were combined 
using Fisher method. After Benjamini - Hochberg mul-
tiple testing correction, peaks were called on obtained 
tracks with q-value cutoff of 1e-5. Further obtained BED 
files were manipulated using Bedtools (2.27.1) [89] to dis-
card NFRs overlapping low complexity regions as defined 
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in the Ensembl’s [90] reference genome (GRCz11). 
Enriched motifs in NFRs were identified using Homer 
(4.10) [91]. Downstream bioinformatics analysis were 
performed in R 3.4.4 using several Bioconductor [92] 
packages. Cell type specific genes at quiescent state, were 
identified using DESeq2 [93] by comparing gene expres-
sion in specific cell type with gene expression in the other 
two. High-dimensional portraying of gene expression 
profiles was performed using oposSOM [36]. Differen-
tial gene expression analysis and differential accessibility 
analysis was performed using DESeq2 [93]. ATAC-seq 
peaks were processed and visualized using ChIPseeker 
[94], clusterProfiler [95], rtracklayer [96] and Gviz [97].

Histology and fluorescent microscopy
Adult females were sacrificed by overdosing MS-222 
(Sigma-Aldrich, Germany) as previously described [98]. 
Samples were fixed in Dietrich’s fixative [98], dehydrated 
in ethanol and embedded in JB-4 resin (Sigma-Aldrich, 
Germany) for 3 h at 4 °C. Liver histology was examined 
microscopically in sections (4 μm thick) after hematoxy-
lin and eosin (Sigma-Aldrich, Germany) staining using a 
modified protocol with increased staining and wash times 
to account for the lower staining efficiency in JB-4 resin. 
To detect fluorescence of GFP, mCherry and RFP, livers 
were fixed in 4% formaldehyde, incubated overnight in 
20% sucrose, frozen in OCT solution (Leica Biosystems, 
France) and viewed under fluorescence microscope after 
sectioning (section thickness = 15 μm).
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Abstract 

Background: Elucidating the Transcription Factors (TFs) that drive the gene expres-
sion changes in a given experiment is a common question asked by researchers. The 
existing methods rely on the predicted Transcription Factor Binding Site (TFBS) to 
model the changes in the motif activity. Such methods only work for TFs that have a 
motif and assume the TF binding profile is the same in all cell types.

Results: Given the wealth of the ChIP-seq data available for a wide range of the TFs 
in various cell types, we propose that gene expression modeling can be done using 
ChIP-seq “signatures” directly, effectively skipping the motif finding and TFBS prediction 
steps. We present xcore, an R package that allows TF activity modeling based on ChIP-
seq signatures and the user’s gene expression data. We also provide xcoredata a com-
panion data package that provides a collection of preprocessed ChIP-seq signatures. 
We demonstrate that xcore leads to biologically relevant predictions using transforming 
growth factor beta induced epithelial-mesenchymal transition time-courses, rinderpest 
infection time-courses, and embryonic stem cells differentiated to cardiomyocytes 
time-course profiled with Cap Analysis Gene Expression.

Conclusions: xcore provides a simple analytical framework for gene expression mod-
eling using linear models that can be easily incorporated into differential expression 
analysis pipelines. Taking advantage of public ChIP-seq databases, xcore can identify 
meaningful molecular signatures and relevant ChIP-seq experiments.

Keywords: Gene expression, Gene regulation, Regression, Transcription factors, ChIP-
seq

Background
Gene expression profiling is often performed to elucidate the transcriptional regula-
tors in a given system/perturbation. A common approach is to use transcription factor 
motifs to computationally predict the TFBS within promoter regions of known genes. 
The “motif activity” is then inferred based on gene expression profiles [1–3]. Although 
such methods are quite simplistic, they proved useful for the identification of key molec-
ular regulators [1, 2, 4, 5]. The limitations are that many TFs do not have a defined motif 
and some binding events may be specific to a particular biological context.
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ReMap [6] and ChIP-Atlas [7] provide a wealth of uniformly processed ChIP-seq 
data (genome-wide peaks) for TFs but also other transcriptional regulators includ-
ing transcriptional coactivators and chromatin-remodeling factors. Currently, only a 
limited number of tools exist that tap into these databases. Two examples are Lisa [8] 
identifying the most likely transcriptional regulators in an experiment based on user-
supplied gene expression information, and Virtual ChIP-seq program [9] that can 
predict the binding of individual TF in a cell type of interest based on gene expression 
information. However, to our knowledge, there are no published methods that take 
advantage of this data to directly model the activity of transcriptional regulators.

Here, we propose to use the publicly available ChIP-seq data to directly repre-
sent the genome-wide occupancy of regulators. We intersected the peaks with pro-
moter regions and used linear ridge regression to infer the regulators associated with 
observed gene expression changes (Fig.  1A). The advantage of this approach is the 
direct integration of gene expression profiles with experimental TF binding data. 
We provide (a) processed and pre-computed, ChIP-seq based molecular signatures 
(xcoredata), and (b) methodology for activity modeling (xcore). The framework is 
implemented as an R package (available in Bioconductor) and integrates smoothly 
with commonly used differential expression workflows like edgeR [10] or DESeq2 
[11].

Implementation
Expression data processing

Xcore takes promoter or gene expression counts matrix as input, the data is then filtered 
for lowly expressed features, normalized for the library size and transformed into counts 
per million (CPM) using edgeR [10]. Users need to designate the base-level samples by 
providing an experiment design matrix. These samples are used as a baseline expression 
when modeling changes in gene expression. xcore implements promoter- and gene-level 
analyses, using either promoter or gene expression data. In our experience we found 
promoter-level analysis to provide better results (Additional file 1: Fig. S1). Cap Analysis 
Gene Expression (CAGE) data is an input of choice for promoter level analysis. How-
ever, xcore can be used with other types of expression data such as microarray or RNA-
seq data to perform gene-level analysis. Promoter-level analysis based on RNA-seq data 
is possible in principle but currently not implemented.

Molecular signatures

A second input consists of molecular signatures describing known transcription fac-
tors’ binding preferences within the promoter’s vicinity. We provide sets of precom-
puted molecular signatures with xcoredata, the accompanying data package. The 
signatures were obtained by downloading all ChIP-seq data from ReMap2020 [6] and 
ChIP-Atlas [7] and intersecting it against ± 500 nt window of know promoter regions, 
defined based on FANTOM5’s hg38 annotation [12]. The signatures can also be easily 
constructed using xcore by providing predicted TFBS or custom ChIP-seq peaks (see 
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Fig. 1 Inferring transcription factors activities from gene expression during TGFβ induced EMT in A-549 
and MDA-231-D cell lines. A Flowchart depicting xcore and xcoredata functionalities. B Boxplots showing 
 R2 values for gene expression prediction models constructed using different molecular signature sets: 
Motif-based (Jaspar, SwissRegulon) and ChIP-seq based (ReMap2020, ChIP-Atlas). Each boxplot shows  R2 
values pooled across all the replicates. Models were trained and evaluated in tenfold cross-validation on 
individual replicates, using data on gene expression changes between 0 and 24 h after treatment in our 
newly generated TGFβ induced EMT experiment performed in A-549 and MDA-231-D cell lines. C Heatmap 
showing the dynamics of TF activities during TGFβ induced EMT. Heatmaps on the left present TF activities 
estimated using CAGE data from our newly generated TGFβ induced EMT experiment performed on A-549 
and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated using previously published 
microarray data from the TGFβ induced EMT experiment performed on A-549 cell lines. The TF activities were 
calculated in the reference to 0 h time point. Only the top-scoring ReMap2020 signatures are shown. Grey 
color designates NA values
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xcore user guide). Detailed information on the molecular signatures construction can 
be found in  Extended Materials and Methods (Additional file 3).

Expression modeling

In xcore we describe the relationship between the expression (Y) and molecular sig-
natures (X) using linear model formulation:

where Y is a sample expression level, µ is the basal expression level, β0 is the intercept, βj 
is a j-th molecular signature activity and  Xj is a j-th molecular signature.

Here, we are interested in finding the unknown molecular signatures’ activities (β) 
that describe the effect of molecular signature (X) on expression (Y). By including 
µ in the above equation we effectively model the change in expression between the 
basal expression level and the corresponding sample. Models are trained using penal-
ized linear regression. In particular, we use ridge regression [13] as it allows us to take 
advantage of an existing significance testing methodology [14]. We observed ridge 
regression to work equally well to lasso and elastic net regression (Additional file 2: 
Fig.  S2C). In practice, to fit our linear models we use the popular R package glm-
net [15]. For each sample, that is for each time point and replicate, a separate model 
is trained using sample change in expression and molecular signatures shared at the 
experiment scale. In layman’s terms, for each sample, we are seeking to find a combi-
nation of ChIP-seq based signatures that best explains the observed changes in gene 
expression. For each model, the ridge regression λ tuning parameter is found sepa-
rately using the cross-validation technique (CV). By default tenfold CV is used, and λ 
value giving the smallest mean squared error is selected.

Next, the estimated molecular signatures’ activities can be tested for significance. In 
short, using matrix formulation the ridge regression estimator is defined as

where X is our molecular signatures matrix, � is a ridge regression tuning parameter, 
and Y  is a vector of our sample’s changes in expression. Then, the estimate of βλ standard 
error is calculated from the following:

where ν is the residual effective degrees of freedom. The significance of the individual 
molecular signatures’ activities can be then tested using a test of significance for ridge 
regression coefficients. For further details, we refer interested readers to [14].

To summarize the results from individual replicates, following the procedure 
described in [16], the obtained estimates and their standard errors are pooled across 

Y = µ+ β0 + β1X1 + · · · + βpXp

β̂�
= X ′X + �I

−1
X ′Y
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the replicates by calculating their weighted mean with variance-defined weights and 
weighted mean error:

Using this result, we calculate a Z-score for each molecular signature and time-point.
Finally, molecular signatures are ranked based on their overall Z-score across the time-

points calculated using Stouffer’s Z method [17].

Linear regression models comparison

To compare different models, coefficients of determination  (R2) were calculated for 
models trained on individual replicates at selected time points using tenfold cross-val-
idation and pooled across replicates. Additional information on this procedure is pro-
vided in Extended Materials and Methods (Additional file 3).

Results
We used xcore to perform gene expression modeling analysis in the context of three 
CAGE datasets: (a) newly generated transforming growth factor beta (TGFβ) induced 
epithelial-mesenchymal transition (EMT) experiment performed in A-549 and MDA-
231-D cell lines, (b) previously published FANTOM5’s rinderpest infection time-course 
dataset performed in 293SLAM and COBL-a cell lines using native and recombinant 
rinderpest virus lacking accessory V and C proteins [12], (c) previously published FAN-
TOM5’s Human H3 embryonic stem cells differentiated to cardiomyocytes time-course 
dataset [12] and a microarray dataset: previously published TGFβ induced EMT in 
A-549 cell line (GSE17708) [18]. Detailed information on the procedures used to process 
the raw CAGE data can be found in  Extended Materials and Methods (Additional file 3).

ChIP‑seq molecular signatures provides better model performance

We compared the models built using ChIP-seq signatures (ReMap2020 and ChIP-Atlas) 
vs motif-based signatures (Jaspar and SwissRegulon). The models based on ChIP-seq 
signatures showed on average higher  R2 values, which reflects the proportion of variance 
explained by the model and overall “goodness of fit”. In particular, modeling expression 
between 0 and 24 h after TGFβ treatment in our novel MDA-231-D dataset yielded an 
average  R2 of 0.179 for ChIP-seq signatures and 0.077 for motif signatures. For compar-
ison the randomized version of ReMap2020 molecular signature yielded  R2 close to 0 
(Fig. 1B, Additional file 2: Fig. S2B).

xcore recovers biologically relevant expression regulators

To investigate the biological relevance of the obtained results, we looked at the top-scor-
ing signatures from ReMap2020 (Fig.  1C) and ChIP-Atlas (Additional file  2: Fig.  S2A) 
in TGFβ induced EMT datasets. Among those, we identified known key TFs involved 
in the TGFβ pathway such as SMAD2/3/4 [19], SSRP1, HNF1B [20], DDX5 [21] or 
RELA [22]. Other well-known EMT-linked TFs also returned as significant including 
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ZEB1, SNAI2, TBX3, SOX4 (Additional file 4: Table S1, Additional file 5: Table S2, Addi-
tional file 6: Table S3). In case of FANTOM5’s rinderpest infection dataset, top-scoring 
ReMap2020 and ChIP-Atlas signatures (Fig. 2, Additional file 7: Table S4) showed sev-
eral TFs involved in the closely related measles infection pathway, including RELA, IRF9, 
TP53 (KEGG PATHWAY:map05162) [23]. For human H3 embryonic stem cells differ-
entiated to cardiomyocytes time-course dataset, a number of known heart development 
regulators were found among top-scoring ReMap2020 and ChIP-Atlas signatures (Addi-
tional file 8: Table S5), such as JARID2, SMAD3, NKX2-5 (GO:0007507) [24].

Fig. 2 Estimating transcription factors activities from gene expression during rinderpest infection in 
293SLAM and COBL-a cell lines. A, B Heatmaps presenting TF activities of the most significant molecular 
signatures inferred using FANTOM5’s rinderpest infection time-series dataset. The underlying experiments 
were performed in 293SLAM and COBL-a cell lines using native and recombinant rinderpest virus lacking 
accessory V and C proteins (rinderpest(-C)). Results obtained using ReMap2020 and ChIP-Atlas based 
molecular signatures are displayed on the top and bottom panels respectively
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Comparison with the state‑of‑the‑art tools

We compared our results with state-of-the-art motif-based gene expression prediction 
framework ISMARA [1] and Lisa program which predicts the most likely transcriptional 
regulators from gene expression data based on ChIP-seq and chromatin accessibility 
data available in Cistrome Data Browser [25]. While ISMARA is conceptually similar 
and was inspirational to xcore, Lisa takes a different approach. Using a user supplied 
list of differentially expressed genes, Lisa first selects a subset of relevant experiments 
describing chromatin state (H3K27ac ChIP-seq or DNase-seq) using lasso regres-
sion. Next it identifies the most relevant TF using in-silico deletion technique [8]. To 
compare with our results, we used both tools on our novel TGFβ induced EMT, rin-
derpest infection and embryonic stem cells differentiated to cardiomyocytes datasets. 
We have run ISMARA in RNA-seq mode with a genome version hg38 and no miRNA 
using raw FASTQ files for our novel TGFβ induced EMT dataset and BAM files avail-
able in FANTOM5 study [12] mapped against genome version hg38 for the other data-
sets. To use Lisa we performed differential expression analysis using edgeR [10] between 
the most extreme time points in our time-course datasets. Then lists of 100 most sig-
nificant up- (logFC > 0) and 100 most significant down-regulated (logFC < 0) genes were 
submitted to Lisa. Next, we compared the results from all tools with a list of related 
transcriptional regulators. We constructed lists of related transcriptional regulators for 
each dataset using Gene Ontology term regulation of epithelial to mesenchymal transi-
tion (GO:0010717), KEGG pathway Measles (map05162) and Gene Ontology term heart 
development (GO:0007507) by including only regulators available in the references of all 
tools. The number of EMT related transcriptional regulators recovered among the top-
scoring signatures was higher for xcore and Lisa than ISMARA (Table 1). In case of rin-
derpest infection (Table 2) Lisa recovered the highest number of related TF in 293SLAM 
cell line. In the case of COBL-a and COBL-a rinderpest(-C) analyzes xcore found one 
more TF than ISMARA and Lisa. Finally, for embryonic stem cells differentiated to 

Table 1 Recovering epithelial to mesenchymal transition transcriptional regulators

Table summarizing EMT-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their top-scoring 
signatures based on TGFβ induced EMT CAGE datasets. The list of EMT-related transcriptional regulators used to assess the 
recovery was constructed using Gene Ontology term regulation of epithelial to mesenchymal transition (GO:0010717) by 
including only regulators available in the references of all tools

Top 
signatures

A‑549 MDA‑231‑D

ISMARA Lisa xcore ISMARA Lisa xcore

ReMap2020 ChIP‑
Atlas

ReMap2020 ChIP‑Atlas

1–10 SMAD4 SMAD3, 
SMAD4, 
GATA3

SMAD3, 
SMAD2

SMAD3, 
SMAD2, 
SMAD4

SMAD4, 
SMAD3

SMAD3, 
SMAD4

SMAD3, 
SMAD4, 
SMAD2, 
GATA3

11–50 FOXA2, 
FOXA1

EZH2, GATA3, 
SMAD4

EZH2, 
FOXA2

SMAD4 GATA3 SMAD2 EZH2, 
FOXA2, 
FOXA1

51–100 GATA3, 
FOXA1

NKX2-1, 
TCF7L2

FOXA1, 
FOXA2, 
NKX2-1

FOXA1, 
GATA3

FOXA1, 
NKX2-1

EZH2, FOXA1
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cardiomyocytes (Table 3) Lisa was able to find the highest number of related TF, while 
xcore and ISMARA found the same number of related TF.

Conclusions
Xcore provides a flexible framework for integrative analysis of gene expression and pub-
licly available TF binding data to unravel putative transcriptional regulators and their 
activities. Our analyses showed superior results when using ChIP-seq based signa-
tures as compared to motifs-based ones. We attribute this difference to the presence of 
biotype-specific binding information which might be lost in motifs that describe more 
general transcription factor binding preferences. Despite high numbers of ChIP-seq 
signatures and redundancy, our machine learning framework is able to select biologi-
cally relevant signatures. In our comparison with motif-based ISMARA and ChIP-seq 
based Lisa, xcore performed competitively with those tools. Especially, both xcore and 
Lisa worked exceptionally well at recovering EMT-related transcriptional regulators. 
However, a comprehensive comparison of xcore with other tools would require further 
benchmarking efforts. Such efforts are currently hindered by the lack of standard bench-
marking datasets for transcriptional regulators’ inference problems. In conclusion, xcore 
is useful for generating testable hypotheses about the data and provides a novel way to 
connect gene expression data with relevant ChIP-seq experiments.

Methods
TGF‑β1 stimulation to A‑549/MDA‑231‑D

A-549 Lung cancer cells (CCL-185, ATCC) and MDA-231-D highly metastatic human 
breast cancer cells [26] (gift from Dr. Kohei Miyazono, Tokyo Univ.) were cultured in 
Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific Inc., Waltham, MA, 
USA) supplemented with 10% fetal bovine serum, 1  mM sodium pyruvate (Thermo 
Fisher Scientific Inc., Waltham, MA, USA) and penicillin/streptomycin (100  U/mL, 
100  µg/mL; Thermo Fisher Scientific Inc., Waltham, MA, USA). TGF-β1 (7754-BH, 
Recombinant Human TGF-beta 1, R&D Systems) was added at the final concentration of 
1 ng/mL. At 0, 1, 2, 4, 6, and 24 h post stimulation, cells were harvested followed by RNA 
extraction using RNeasy mini kit (Qiagen, Valencia, CA, USA). Transcriptome data was 
produced by nAnT-iCAGE [27]. CAGE libraries were sequenced on Illumina HiSeq 2500 
(50-nt single read).

Table 3 Recovering heart development transcriptional regulators

Table summarizing heart development-related transcriptional regulators recovered by ISMARA, Lisa and xcore among their 
top-scoring signatures based on Human H3 embryonic stem cells differentiated to cardiomyocytes time-series dataset. 
The list of heart development-related transcriptional regulators used to assess the recovery was constructed using Gene 
Ontology term heart development (GO:0007507) by including only regulators available in the references of all tools

Top signatures ISMARA Lisa xcore

ReMap2020 ChIP‑Atlas

1–10 GATA6, SMAD3, GATA4

11–50 SNAI2, MEF2A, 
SRF, GATA4

SMAD1, EOMES, GATA3, SMAD2 SMAD3, NKX2-5, 
ATF2, TBX5, RBPJ

RARA 

51–100 MEF2C, WT1 TBX5, REST, MBD2, TP53, SMAD4 SNAI2 JUN, TP53
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Abbreviations
CAGE  Cap analysis gene expression
CPM  Counts per million
CV  Cross-validation
EMT  Epithelial-mesenchymal transition
TF  Transcription factor
TFBS  Transcription factor binding site
TGFβ  Transforming growth factor beta
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Additional file 1: Figure S1. (A) Boxplots showing  R2 values for gene expression prediction models constructed 
either on gene- or promoter-level expression data. Each boxplot shows  R2 values pooled across all the replicates. 
Models were trained and evaluated in tenfold cross-validation on individual replicates, using data on gene expres-
sion changes between 0 and 24 h after treatment in our newly generated TGFβ induced EMT experiment performed 
in A-549 and MDA-231-D cell lines. The models were constructed using ReMap2020 or ChIP-Atlas molecular 
signatures.

Additional file 2: Figure S2. (A) Heatmap showing the dynamics of TF activities during TGFβ induced EMT. Heat-
maps on the left present TF activities estimated using CAGE data from our newly generated TGFβ induced EMT 
experiment performed on A-549 and MDA-231-D cell lines. Heatmap on the right depicts TF activities estimated 
using previously published microarray data from the TGFβ induced EMT experiment performed on A-549 cell lines. 
The TF activities were calculated in the reference to 0 h time point. Only the top-scoring ChIP-Atlas signatures are 
shown. Grey color designates NA values. (B) Boxplots showing  R2 values for gene expression prediction models 
constructed using different molecular signature sets: Motif based (Jaspar, SwissRegulon) and ChIP-seq based 
(ReMap2020, ChIP-Atlas). Each boxplot shows  R2 values pooled across all the replicates. Models were trained and 
evaluated in tenfold cross-validation on individual replicates, using data on gene expression changes between 0 
and 24 h after the rinderpest infection treatment experiment performed in 293SLAM cell line. (C) Boxplots showing 
 R2 values for gene expression prediction models trained using lasso, elastic net or ridge regression method. Each 
boxplot shows  R2 values pooled across all the replicates. Models were trained and evaluated in tenfold cross-
validation on individual replicates, using data on gene expression changes between 0 and 24 h after treatment in 
our newly generated TGFβ induced EMT experiment performed in A-549 and MDA-231-D cell lines. The models were 
constructed using ReMap2020 molecular signatures and promoter-level expression data.

Additional file 3: Extended Materials and Methods. Extended description of procedures used to process the raw 
CAGE data, construct molecular signatures, and assess the accuracy of used models.

Additional file 4: Table S1. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in A-549 cell line dataset.

Additional file 5: Table S2. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in MDA-231-D cell line dataset.

Additional file 6: Table S3. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using TGFβ induced EMT in A-549 cell line dataset (GSE17708).

Additional file 7: Table S4. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using rinderpest infection in 293SLAM and COBL-a cell lines datasets.

Additional file 8: Table S5. Table provides the activities of ReMap2020 and ChIP-Atlas molecular signatures esti-
mated using Human H3 embryonic stem cells differentiated to cardiomyocytes time-course.
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Summary and conclusions 

In eukaryotes, the first layer of gene expression regulation is mediated by DNA-binding 

proteins called transcription factors. These regulatory proteins can enhance or inhibit 

expression by binding to cis-regulatory DNA elements and interacting with the basal 

transcription machinery. Despite substantial progress in our understanding of these 

processes, identification of the transcription factors causative to gene expression changes 

remain one of the key questions in the field of transcriptional regulation. In my studies I 

have explored several bioinformatics approaches to study gene regulation on the genome 

wide level by integrating transcriptomics and epigenomics data. Through gene expression 

clustering combined with transcription factor motif enrichment analysis, I have identified 

putative regulators of co-expressed gene clusters in the contexts of heart development and 

early liver injury. These experiences led me to develop a new bioinformatics tool for 

transcription factor activity modeling using linear models and known transcription factors 

molecular signatures. Collectively, the presented articles showcase how gene expression 

and transcription factors binding data can be jointly analyzed to gain deeper 

understanding of gene regulation mechanisms. 

 

The main results of the works included in this doctoral dissertation are: 

 

� Development of ATAC-seq processing pipeline that allows identification of open 

chromatin regions, with methods to handle replicated data. The pipeline is 

implemented in Nextflow framework (Di Tommaso et al. 2017) and is available 

DW�RXU�ODE¶V�*LW/DE�UHSRVLWRU\��KWWSV���JLWODE�FRP�]GJODE�DWDFVHTBSLSHOLQH�� 

� &KDUDFWHUL]DWLRQ�RI�WKH�FDUGLRP\RF\WHV¶�WUDQVFULSWRPH�DQG�HSLJHQRPH�ODQGVFDSH�

at early stages of heart development using zebrafish as a model organism, by 

means of RNA-seq expression clustering and motif enrichment analysis. The 

analysis revealed major transcriptomic and epigenomic shifts towards more cell 

type specific expression patterns during development. Data collected from gata5, 

hand2, and tbx5 mutants, in which heart development is affected, suggested the 

predominant role of distal regulatory elements in cardiomyocytes development. 

� Characterization of the transcriptomic and epigenomic response to hepatotoxic 

liver injury of selected liver cell types: liver sinusoidal endothelial cells, 

hepatocytes and hepatic stellate cells, using zebrafish as a model organism. RNA-

seq expression clustering together with ATAC-seq based motif enrichment 
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analysis of the co-expression clusters indicated the endothelial cells to be the first 

cell population to respond to liver injury. The molecular response involves 

activation of genes related to metabolic and redox processes, including opening 

chromatin at their promoters. Motif enrichment analysis suggested the 

transcription factors FOXA1 and FOXA3 as potential regulators of endothelial 

cells activation. 

� Development of xcore R package, implementing a flexible gene expression 

prediction framework. Its key use case is for modeling gene expression regulators 

based on large ChIP±seq databases. The package and user guide is available at 

https://bkaczkowski.github.io/xcore/.  
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